A
D ?&“\k

How to Stop ducking
and Be Awesome Instead

.} ngho

Table of Contents

How to Suck Less
Todon’t
Today Is Goof Off at Work Day,
But You Did Not Persuade Me
The Only Truly Failed Project
Who Needs Talent When You Have Intensity?
Are You An Expert?
On Our Project, We’re Always 90 Percent Done
Managing with Trust
Boyd’s Law of Iteration
Overnight Success: It Takes Years
Programming
How to Become a Better Programmer by Not Programming
The Broken Window Theory
Programming; Love It or [.eave It
Some Lessons from Forth
The Joy of Deletion
Separating Programming _Sheep from Non-Programming Goats
Are You Following the Instructions on the Paint Can?
Curly’s Law: Do One Thing
The Ultimate Code Kata
In Programming, One Is the L.oneliest Number
Who’s Your Coding Buddy?
Software Apprenticeship
Web Design Principles
Judging Websites
In Pursuit of Simplicity
Will Apps Kill Websites?
Doing It Like Everybody Else
The One-Button Mystique
Usability on the Cheap and Easy,
The Opposite of Fitts’ Law
Usability vs. Learnability

Google’s Number One UI Mistake
But It’s Just One More
Just Say No
Ul Is Hard
Testing
Good Test/Bad Test
Unit Testing vs. Beta Testing
Sometimes It’s a Hardware Problem
Exception-Driven Development
Know Your User
The Rise and Fall of Homo Logicus
Ivory Tower Development
This Is What Happens When You Let Developers Create Ul
Defending Perpetual Intermediacy;
Every User Lies
Shipping Isn’t Enough
Don’t Ask—OQObserve
Are Features the Enemy?
The Organism Will Do Whatever It Damn Well Pleases
For a Bit of Colored Ribbon
Building Social Software for the Anti-Social
Causes We Should Care About
Preserving the Internet... And Everything Else
The Importance of Net Neutrality
Youtube vs. Fair Use
Gaming
Everything I Needed to Know About Programming I Learned from
BASIC
Game Player, Game Programmer
Things to Read
Programmers Don’t Read Books, But You Should

Computer Crime, Then and Now
How to Talk to Human Beings
Practicing the Fundamentals: The New Turing Omnibus

OceanofPDF.com

How to Suck Less

OceanofPDEF.com

Todon’t

What do you need to do today? Other than read this blog entry, I mean.

Have you ever noticed that a huge percentage of -like productivity
porn site content is a breathless description of the details of Yet Another To-
Do Application? There are dozens upon dozens of the things to choose
from, on any platform you can name. At this point it's getting a little
ridiculous; per , you'd need a to-do app just to keep track of
all the freaking to-do apps.

I:I Juag iy e moening
STl
Al hards mesling

e | R R

Flitra U vilh conlerancs Gl
Parormanco rovirs
[[] Retum sakes contracts i
0 Mal Sarah's gt -

- |

Today m
ket 7 days },
ingiox il
Errands

Bhgalings i
Emails i
Haalh i
Leaming Spanish]
Stufl bo read &
Vidoos 1o walch |

= | Firdsh @ report
L J

| o ba the aym

Cresitis

| Do lwundiy

Trp 1o NY

Maw the lawn

ot s i P)

H haral

Haan i cai

oaean oft deskhop
hit 81 Pl

CENNET L O M) e

Teda
Pick up the milk g5 A
Bubmift TPS nésport Sol
Raturn library Dooks B0 P
Credér stationsry

Take oull the irash

Buy oif lo Bob

® Ay ToDe s
s Boameng Roulioe

s Broakiast

L]

8 Trir ADod lRnvirg

= Achoally e
& Cilica

® Wirin post 1
'Wirite post 2

I've tried to maintain to-do lists at various points in my life. And I've always
failed. Utterly and completely. Even turning it into a game, like the cleverly
constructed Epic Win app, didn't work for me.

Watch: EpicWin: Pre-Release Trailer

Eventually I realized that the problem wasn't me. All my to-do lists started
out as innocuous tools to assist me in my life, but slowly transformed, each
and every time, into thankless, soul-draining exercises in reductionism. My
to-do list was killing me. Adam Wozniak nails it:

. Lists give the illusion of progress.
. Lists give the illusion of accomplishment.
. Lists make you feel guilty for not achieving these things.

. Lists make you feel guilty for continually delaying certain items.

Ul N W N =

. Lists make you feel guilty for not doing things you don't want to be
doing anyway.

)]

. Lists make you prioritize the wrong things.

7. Lists are inefficient. (Think of what you could be doing with all the
time you spend maintaining your lists!)

8. Lists suck the enjoyment out of activities, making most things feel like
an obligation.

9. Lists don't actually make you more organized long term.

10. Lists can close you off to spontaneity and exploration of things you
didn't plan for. (Let's face it, it's impossible to really plan some things in
life.)

For the things in my life that actually mattered, I've never needed any to-do
list to tell me to do them. If I did, then that'd be awfully strong evidence that
I have some serious life problems to face before considering the rather trivial
matter of which to-do lifehack fits my personality best. As for the things that
didn't matter in my life, well, those just tended to pile up endlessly in the old
to-do list. And the collective psychic weight of all these minor undone
tasks were caught up in my ever-growing to-do katamari ball, where they
continually weighed on me, day after day.

Yes, there's that ever-present giant to-do list, hanging right there over your
head like a guillotine, growing

“Like a crazy hoarder I mistake the root cause of my growing mountain of
incomplete work. The hoarder thinks he has a storage problem when he
really has a 'throwing things away problem'. I say I am 'time poor' as if the
problem is that poor me is given only 24 hours in a day. It's more accurate to
say... what exactly? It seems crazy for a crazy person to use his own crazy
reasoning to diagnose his own crazy condition. Maybe I too easily add new
projects to my list, or I am too reluctant to exit from unsuccessful projects.
Perhaps I am too reluctant to let a task go, to ship what I've done. They're
never perfect, never good enough.

“And I know I'm not alone in making the easy claim that I am 'time poor'. So
many people claim to be time poor, when really we are poor at prioritizing,
or poor at decisiveness, or don't know how to say 'no’ (...to other people, to
our own ideas).

“If only I had a hidden store of time, or if only I had magical organisation
tools, or if only I could improve my productive throughput, then, only then
would I be able to get things done, to consolidate the growing backlogs and

todo lists into one clear line of work, and plough through it like an arctic ice
breaker carving its way through a sheet of ice.”

But are you using the right guillotine? Maybe it'd work better if you tried
this newer, shinier guillotine? I'd like to offer you some advice:

1. There's only anyone should ever need on
their to-do list. Everything else is superfluous.

2. You shouldn't have a to-do list in the first place.

3. Declare to-do bankruptcy right now. Throw out your to-do list. It's
hurting you.

4. Yes, seriously.

5. Maybe it is a little scary, but the right choices are always a little scary,
so do it anyway.

6. No, I wasn't kidding.

7. Isn't Hall and Oates awesome? I know, rhetorical question. But still.
8. Look, this is becoming counterproductive.
9

. Wait a second, did I just make a list?

Here's my challenge. If you can't wake up every day and, using your 100
percent original equipment, God-given organic brain, come up with the
three most important things you need to do that day—then you should
seriously work on fixing that. I don't mean install another app, or read more
productivity blogs and books. You have to figure out what's important to you
and what motivates you; ask yourself why that stuff isn't gnawing at you
enough to make you get it done. Fix that.

Tools will come and go, but your brain and your gut will be here with you
for the rest of your life. Learn to trust them. And if you can't, do whatever
it takes to train them until you can trust them. If it matters, if it really
matters, you'll remember to do it. And if you don't, well, maybe you'll get to
it one of these days. Or not. And that's cool too.

OceanofPDE.com

Today Is Goof Off at Work Day

When you're hired at Google, you only have to do the job you were hired
for 80 percent of the time. The other 20 percent of the time, you can work
on whatever you like—provided it advances Google in some way. At least,
that's the theory.

Google's 20 percent time policy is well known in software engineering
circles by now. What's not as well known is that this concept

“In 1974, 3M scientist Art Fry came up with a clever invention. He thought
if he could apply an adhesive (dreamed up by colleague Spencer Silver
several years earlier) to the back of a piece of paper, he could create the
perfect bookmark, one that kept place in his church hymnal. He called it the
Post-It Note. Fry came up with the now iconic product (he talks to the
Smithsonian about it here) during his "15 percent time," a program at 3M
that allows employees to use a portion of their paid time to chase rainbows
and hatch their own ideas. It might seem like a squishy employee benefit.
But the time has actually produced many of the company's best-selling
products and has set a precedent for some of the top technology companies
of the day, like Google and Hewlett-Packard.”

There's not much documentation on HP's version of this; when I do find
mentions of it, it's always referred to as a "convention," not an explicit
policy. Robert X. Cringely '

“Google didn’t invent that: HP did. And the way the process was instituted
at HP was quite formal in that the 10 percent time was after lunch on
Fridays. Imagine what it must have been like on Friday afternoons in Palo
Alto with every engineer working on some wild-ass idea. And the other part
of the system was that those engineers had access to what they called ‘lab
stores’—anything needed to do the job, whether it was a microscope or a
magnetron or a barrel of acetone could be taken without question on Friday
afternoons from the HP warehouses. This enabled a flurry of innovation
that produced some of HP’s greatest products including those printers.”

Maybe HP did invent this, since they've been around since 1939. Dave
Raggett, for example, apparently pla on
his 10 percent time at HP.

Although the concept predates Google, they've done more to validate it as
an actual strategy and popularize it in tech circles than anyone else. Oddly

enough, I can't {ind any mention of the 20 percent time benefit listed on the
le)age, but it's an integral part of Google's culture. And
for good reason: notable 20 percent projects include , Google News,

Google Talk, and AdSense. According to ex-employee Marissa Meyer, as
of Google's products originated from that 20 percent time.

At Hewlett-Packard, 3M, and Google, "many" of their best and most
popular products come from the thin sliver of time they granted
employees to work on whatever they wanted to. What does this mean?
Should we all be goofing off more at work and experimenting with our own
ideas? That's what the book explores.

0%
DOCTRINE
(el 2

HOW TINKERING, GOOFING OFF,
AND BREAKING THE RULES AT WORK
DRIVE SUCCESS IN BUSINESS

RYAN TATE

Closely related to 20 percent time is the Hack Day. Hack Days carve out a
specific 24 hour timeframe from the schedule, encouraging large groups to
come together to work collaboratively (or in friendly competition) during
that period. Chad Dickerson instituted one of the first at Yahoo in 2005.

“The Friday before, I had organized the first internal Hack Day at Yahoo!
with the help of a loosely-organized band of people around the company.
The ‘hack’ designation for the day was a tip of the hat to hacker culture, but
also a nod to the fact that we were trying to fix a system that didn’t work
particularly well. The idea was really simple: all the engineers in our

division were given the day off to build anything they wanted to build. The
only rules were to build something in 24 hours and then show it at the end
of the period. The basic structure of the event itself was inspired by what
we had seen at small startups, but no one had attempted such an event at a
large scale at an established company.”

“The first Yahoo! Hack Day was clearly a success. In a company that was
struggling to innovate, about seventy prototypes appeared out of nowhere in
a single 24-hour period and they were presented in a joyfully enthusiastic
environment where people whooped and yelled and cheered. Sleep-
deprived, t-shirt-clad developers stayed late at work on a Friday night to
show prototypes they had built for no other reason than they wanted to
build something. In his seminal book about open source software, The
Cathedral and the Bazaar, Eric Raymond wrote: ‘Every good work of
software starts by scratching a developer’s personal itch.” There clearly had
been a lot of developer itching around Yahoo! but it took Hack Day to let
them issue a collective cathartic scratch.”

Atlassian's version, a ¢ ;, also dates back to 2005.
Interestingly, they also attempted to emulate Google's 20 percent time
policy with

“Far and away, the biggest problem was scheduling time for 20 percent
work. As one person put it, ‘Getting 20 percent time is incredibly difficult
amongst all the pressure to deliver new features and bug fixes.” Atlassian
has frequent product releases, so it is very hard for teams to schedule ‘down
time’. Small teams in particular found it hard to afford time away from core
product development. This wasn’t due to Team Leaders being harsh. It was
often due to developers not wanting to increase the workload on their peers
while they did 20 percent work. They like the products they are developing
and are proud of their efforts. However, they don’t want to be seen as
enjoying a privilege while others carry the workload.”

I think there's enough of a track record of documented success that it's
worth lobbying for something like Hack Days or 20 percent time
wherever you work. But before you do, consider if you and your company
are ready:

1. Is there adequate slack in the schedule?

You can't realistically achieve 20 percent time, or even a single measly hack
day, if there's absolutely zero slack in the schedule. If everyone around you
is working full-tilt boogie as hard as they can, all the time, that's... probably
not healthy. Sure, everyone has crunch times now and then, but if your
work environment feels like constant crunch time, you'll need to deal with
that first. For ammunition, try J

2. Does daydreaming time matter?

If anyone gets flak for not "looking busy,"” your company's work culture
may not be able to support an initiative like this. There has to be buy-in at
the pointy-haired-boss level that time spent thinking and daydreaming is a
valid part of work. Daydreaming is not the antithesis of work; on the
contrary, creative problem solving rec

3. Is failure accepted?

When given the freedom to "work on whatever you want," the powers that
be have to really mean it for the work to matter. Mostly that means
providing employees the unfettered freedom to fail miserably at their
skunkworks projects, sans repercussion or judgment. Without failure, and
lots of the stuff, there can be no innovation, or true experimentation. The
value of (quickly!) learning from failures and moving on is enormous.

4. Is individual experimentation respected?

If there isn't a healthy respect for individual experimentation versus the
neverending pursuit of the Next Thing on the collective project task list,
these initiatives are destined to fail. You have to truly believe, as a
company, and as peers, that crucial innovations and improvements can
come from everyone at the company at any time, in bottom-up fashion—
they aren't delivered from on high at scheduled release intervals in the
almighty Master Plan.

Having some official acknowledgement that time spent working on
whatever you think will make things better around these here parts is not
just tolerated—but encouraged—might go a long way towards making
work feel a lot less like work.

OceanofPDE.com

But You Did Not Persuade Me

One of my favorite movie scenes in recent memory is from
, @ dramatized "biography" of the megalomaniac dictator ,
as seen through the eyes of a fictional Scottish personal physician.

-01:34 w) By

Idi Amin: “T Want you to tell me what to do!”
Garrigan: “You want ME to tell YOU what to do?”

Amin: “Yes, you are my advisor. You are the only one I can trust in here.
You should have told me not to throw the Asians out in the first place!”

Garrigan: “I did!”
Amin: “But you did not persuade me, Nicholas! You did not persuade me!”
If you haven't watched this movie yet, you should. It is amazing.

What I love about this tour de force of a scene—beyond the incredible acting
—is that it illustrates just how powerful of a force persuasion really is. In the

hands of a madman or demagogue, dangerously powerful. Hopefully you
don't deal with too many insane dictators on a daily basis, but the reason this
scene works so well is the unavoidable truth it exposes: to have any hope of
influencing others, you must be able to persuade them.

Steve Yegge is as accomplished a software engineer as I can think of. I was
amazed to hear him tell us repeatedly and at length on a podcast that

is not how to write amazing
code, but how to market themselves and their project. What is marketing
except persuasion?

Marc Hedlund, who founded Wesabe and is now the VP of Engineering at
Etsy, thinks of himself not as a CEO or boss, but as the |
believe that could be rewritten as Persuader-in-Chief with no loss of
meaning or nuance.

“I was recently asked how I run our development team. I said, ‘Well,
basically I blog about something I think we should do, and if the blog post
convinces the developers, they do it. If not, I lobby for it, and if that fails
too, the idea falls on the floor. They need my approval to launch something,
but that’s it. That’s as much ‘running things’ as I do, and most of the ideas
come from other people at this point, not from me and my blog posts. I’ve
argued against some of our most successful ideas, so it’s a good thing I don’t
try to exert more control.’

“I’m exaggerating somewhat; of course I haven’t blogged about all of our
ideas yet. But I do think of myself as Lobbyist-in-Chief, and I have lots of
good examples of cases where I failed to talk people into an idea and it
didn’t happen as a result. One person I said this to asked, ‘So who holds the
product vision, then?’ and I replied, “Well, I guess I do,’ but really that’s not
right. We all do. The product is the result of the ideas that together we’ve
agreed to pursue. I recruit people based on their interest in and enthusiasm
about the ideas behind Wesabe, and then set them loose, and we all talk and
listen constantly. That’s how it works—and believe it or not, it does work.”

So how do we persuade? Primarily, I think, when we)le. Even
if that means getting down on your knees and to show
someone else how it's done. But maybe you're not a leader. Maybe you're
just a lowly peon. Even as a peon, it's still possible to

ou. A commenter summarized this grassroots method of

persuasion nicely:

e His ideas were, on the whole, pretty good.
e He worked mostly bottom-up rather than top-down.

e He worked to gain the trust of others first by dogfooding his own
recommendations before pushing them on others.

e He was patient and waited for the wheels to turn.
Science and data are among the best ways to be objectively persuasive, but

remember that data alone isn't the reductionist end of every single topic.
Beware the pitfall.

“Yes, it’s true that a team at Google couldn’t decide between two blues, so
they’re testing 41 shades between each blue to see which one performs
better. I had a recent debate over whether a border should be 3, 4 or 5 pixels
wide, and was asked to prove my case. I can’t operate in an environment like
that. I’ve grown tired of debating such minuscule design decisions. There are
more exciting design problems in this world to tackle.”

If I measure by click data alone,
in it. Incorporate data, by all means. But you need to tell a bigger, grander,
more inspiring story than that to be truly persuasive.

I ” every year because I believe it is
the single best persuasive essay I've ever read. It is remarkably persuasive
without ever resorting to anger, incivility, or invective. . But do
more than just read; study it. How does it work? Why does it work? Does it
cite any data? What techniques make this essay so incredibly compelling?

Nobody ever changed anything by remaining quiet, idly standing by, or
blending into the faceless, voiceless masses. If you ever want to effect
change, in your work, in your life, you must learn to persuade others.

OceanofPDF.com

The Only Truly Failed Project

Do you remember Microsoft Bob? If you do, you probably remember it as
an intensely marketed but laughable failure—what some call the "number
one flop" at Microsoft.

Introduciag Hard-working, Eory-gaing Saftware Evoeyman Wil Use

Why will
one in your
household love B=B?

Brtins Simin wojh! dimiatil binsikild prmjrasi di
Ralf g beap prat hestis bimietald bamaing!

LA Py P S0 Y

There's no question that Microsoft Bob was nothing short of an unmitigated
disaster. But that's the funny thing about failures—they often lead to later
successes. Take it from someone who lived and breathed the Bob project:

“I was the one who sent Bill Gates email at the height of the positive Bob-
mania that said we were likely to face a horrible backlash. Tech influentials
had started telling me that they were going to bury Bob. They not only
didn't like it, they were somehow angry that it had even been developed. It
was personal.

“And that's exactly what happened. Bob got killed. But first, it was
ridiculed and stomped.

“For Microsoft, it was a costly mistake. For the people who worked on it,
Bob taught many lessons. Lessons that came into play for subsequent
products that made a big impact, both at Microsoft and beyond.

“How many people know that the lead developer for Bob 2.0 was also the
and the development lead for Half-Life, which became
an industry phenomenon, winning more than 50 Game of the Year awards
and selling more than 10 million copies?

“Or that Darrin Massena—development lead for Bob 1.0, most recently
named Technical Innovator of the Year here in Washington State—and Valve
co-founder are the co-founders and partners behind

—which is now the world's leading online photo editor, attracting
almost 40 million visits a month and a million unique users a day.”

And then, of course, I'd be remiss if I didn't mention that Melinda French—
Bill Gates' —managed the Microsoft Bob project at one point.
Bob was the first Microsoft consumer project that
. Well, at least he got a wife out of it.

Yes, Bob was an obvious, undisputed, and epic failure. We can point and
laugh at Bob. But to me, Baob is less of a comic figure than a tragic one.

Unless you're an exceptionally lucky software developer, you've probably
worked on more projects that failed than projects that succeeded. Failure is
. Odds are, you're working on a project that will fail
right now. Oh sure, it may not seem like a failure yet. Maybe it'll fail in
some completely unanticipated way. Heck, maybe your project will buck
the odds and even succeed.

But I doubt it.

I . I keep it on my shelf to remind me
that these kinds of relentless, inevitable failures aren't the crushing setbacks
they often appear from the outside. On the contrary; I believe it's im

“Charles Bosk, a sociologist at the University of Pennsylvania, once
conducted a set of interviews with young doctors who had either resigned
or been fired from neurosurgery-training programs, in an effort to figure out
what separated the unsuccessful surgeons from their successful
counterparts.

“He concluded that, far more than technical skills or intelligence, what was
necessary for success was the sort of attitude that Quest has—a practical-
minded obsession with the possibility and the consequences of failure.
‘When I interviewed the surgeons who were fired, I used to leave the
interview shaking,” Bosk said. ‘I would hear these horrible stories about
what they did wrong, but the thing was that they didn't know that what they
did was wrong. In my interviewing, I began to develop what I thought was
an indicator of whether someone was going to be a good surgeon or not. It
was a couple of simple questions: Have you ever made a mistake? And, if
so, what was your worst mistake? The people who said, 'Gee, I haven't
really had one,' or, T've had a couple of bad outcomes but they were due to
things outside my control'—invariably those were the worst candidates.
And the residents who said, 'T make mistakes all the time. There was this
horrible thing that happened just yesterday and here's what it was." They
were the best. They had the ability to rethink everything that they'd done
and imagine how they might have done it differently.’”

I recently watched the documentary “Iilt: The Battle to Save Pinball.”

Watch: Trailer for “TILT: The Battle To Save Pinball”

It's a gripping story of a pinball industry in crisis. In order to save it, the
engineers at Williams—the only remaining manufacturer of pinball
machines in the United States—were given a herculean task: invent a new

form of pinball so compelling that it makes all previous pinball machines
seem obsolete. I don't want to spoil the whole documentary, so I'll gloss
over exactly how that happened, but astoundingly enough—they succeeded.

And then were promptly laid off en masse, as Williams shut down its
pinball operations.

Unlike Microsoft Bob, the Williams engineers built an almost revolutionary
product that was both critically acclaimed and sold well—but none of that
mattered. It's sobering to watch the end reel of “Tilt,” as the engineers
involved mournfully discuss the termination of their bold and seemingly
successful project.

“Everyone was in awe. They couldn't understand why it happened. Here
we'd just done this thing that from all we could tell was a total success.
Why would they do that?

“We succeeded. Management gave us an impossible goal, and we sat there
and we actually did what they thought we couldn't do.

“You know, we didn't really win... we lost. I gave it everything I had. I
think that those fifty guys that worked on it, they also passionately did
everything that they could.”

Sometimes, even when your project succeeds, you've failed. Due to
forces entirely beyond your control. It's depressing, but it's reality.

The trail out isn't all doom and gloom. It also documents the ways in which
these talented pinball engineers went on to practice their craft after being
laid off. Most of them still work in the video game or pinball industry.
Some freelance. Others formed their own companies. A few went on to
work at Stern Pinball, which figured out how to make a small number of
pinball machines and still turn a profit.

These two stories, these two projects—the abject failure of Microsoft Bob,
and the aborted success of Pinball 2000—have something in common
beyond mere failure. All the engineers involved not only survived these
failures, but often went on to greater success afterwards. Possibly as a
direct result of their work on these "failures."

Failure is a wonderful teacher. But there's no need to seek out failure. It will
find you. Whatever project you're working on, consider it an opportunity to
learn and practice your craft.
doing. The journey of the project should be its own reward, regardless of
whatever happens to lie at the end of that journey.

The only truly failed project is the one where you didn't learn anything
along the way.

OceanofPDE.com

Who Needs Talent When You Have
Intensity?

Jack Black, in the DVD extras for “School of Rock,” had this to say in an
interview:

“I had to learn how to play electric guitar a little bit because all I play is
acoustic guitar. And I'm still not very good at electric guitar. And the truth
is, I'm not very good at acoustic guitar, but I make up for it with intensity.”

It's hard to appreciate how true this is until you've heard (or better yet, seen)
Jack Black's band Ienacious D perform. Musically, they're terrible. But they
still manage to be thoroughly entertaining and often hilarious.

I was reminded of this Jack Black quote while reading
ou' in the excellent Creating Passionate Users blog:

“The I-don't-matter-so-don't-introduce-myself plan was just the beginning
of the ‘it's not about YOU’ experiment. I would conduct the rest of the five
day course with all of my energy devoted to making THEM smarter, rather
than trying to make sure they knew how smart I was. (A clever and
necessary strategy on my part, since I'm not all that smart.)

“The year-long experiment was a success, and I won a nice bonus from Sun
for being one of only four instructors in north America to get the highest
possible customer evaluations. But what was remarkable about this is that
this happened in spite of my not being a particularly good instructor or Java
guru. I proved that a very average instructor could get exceptional results by
putting the focus ENTIRELY on the students. I paid no attention to whether
they thought I knew my stuff.

“And when I say that I was average, that's really a stretch. I have almost no
presentation skills. When I first started at Sun I thought I was going to be
fired because I refused to ever use the overhead slides and just relied on the
whiteboard (where I drew largely unrecognizable objects and unreadable
code). But... I say average when you evaluate me against a metric of
traditional stand-up instructor presentation skills. Which I believe are
largely bullshit anyway. Assuming you meet some very minimal threshold
for teaching, all that matters is that you help the students become smarter.
You help them learn... by doing whatever it takes. And that usually has
nothing to do with what comes out of your mouth, and has everything to do
with what happens between their ears. You, as the instructor, have to design
and enable situations that cause things to happen. Exercises, labs, debates,
discussions, heavy interaction. In other words, things that THEY do, not
things that YOU do (except that you create the scenarios).”

These inspiring results echo my feelings about what it takes to be a "good"
programmer. Don't be cowed by the existence of thousands of developers
far more talented than you are. Who needs talent when you have
intensity?

OceanofPDE.com

Are You An Expert?

I think I have a problem with authority. Starting with m

“It troubles me greatly to hear that people see me as an expert or an
authority, and not a fellow amateur.

“If T've learned anything in my career, it is that approaching software
development as an expert, as someone who has already discovered
everything there is to know about a given topic, is the one surest way to fail.

“Experts are, if anything, more suspect than the amateurs, because they're
less honest. You should question everything I write here, in the same way
you question everything you've ever read online—or anywhere else for that
matter. Your own research and data should trump any claims you read from
anyone, no matter how much of an authority or expert you, I, Google, or the
general community at large may believe them to be.”

Have you ever worked with software developers who
serts, with almost universally painful results? I certainly have. You
might say I've developed an anti-expert bias. Apparently, so has Wikipedia;
a section titled explains:

1. Experts can identify themselves on their user page and list whatever
credentials and experience they wish to publicly divulge. It is difficult
to maintain a claim of expertise while being anonymous. In practice,
there is no advantage (and considerable disadvantage) in divulging
one's expertise in this way.

2. Experts do not have any other privileges in resolving edit conflicts in
their favor: in a content dispute between a (supposed) expert and a non-
expert, it is not permissible for the expert to "pull rank" and declare
victory. In short, "Because I say so" is never an acceptable justification
for a claim in Wikipedia, regardless of expertise. Likewise, expert
contributions are not protected from subsequent revisions from non-
experts, nor is there any mechanism to do so. Ideally, if not always in
practice, it is the quality of the edits that counts.

3. There is a strong undercurrent of anti-expert bias in Wikipedia.
Thus, if you become recognized as an expert you will be held to higher
standards of conduct than non-experts.

Let's stop for a moment to savor the paradox of a free and open encyclopedia
written by people who
. How could that possibly work?

I'd argue that's the only way it could work—when all contributions are
viewed critically, regardless of source. This is a radical inversion of power.
But a radical inversion of power is exactly what is required. There are only a
handful of experts, but untold million amateurs. And the
when you'Te trying to generate a
website that contains a page for... well, everything. The world is a fractal
place, filled with infinite detail. Nobody knows this better than software
developers. The programmers in the trenches, spending every day struggling
with the details, are the people who often have the most local knowledge
about narrow programming topics. There just aren't enough experts to go
around.

So what does it mean to be an expert, then, when expertise is perceived as
impractical at best, and a liability at worst? In a ,
James Bach presented the quintessential postmodern image of an expert

.

performing— in

[turns to fire commissioner] “What do we got here, Kappy?”

“Fire started, 81st floor, storage room. It's bad. Smoke's so thick, we can't
tell how far it's spread.”

“Exhaust system?”

“Should've reversed automatically. It must be a motor burnout.”
“Sprinklers?”

“They're not working on 81.”

“Why not?”

“I don't know.”

[turns to architect] “Jim? Give us a quick refresher on your standpipe
system.”

“Floors have 3 and 1.5 inch outlets.”
“GPM?”

“Fifteen hundred from ground to 68, and 1,000 from 68 to 100, and 500
from there to the roof.”

“Are these elevators programmed for emergencies?”
“Yes.”

“What floor are your plans on?”

“79. My office.”

“That's two floors below the fire. It'll be our Forward Command. Men, take
up the equipment. I want to see all floor plans, 81 through 85.”

“Gotcha.”

[turns to security chief] “Give me a list of your tenants.”
“Don't worry, we're moving them out now.”
“Not live-ins. Businesses.”

“We lucked out. Most of them haven't moved in yet. Those that have are off
at night.”

“I want to know who they are, not where.”
“What's that got to do with anything? Who they are?”

“Any wool or silk manufacturers? In a fire, wool and silk give off cyanide
gas. Any sporting good manufacturers, like table-tennis balls? They give off
toxic gases. Now do you want me to keep going?”

“One tenant list, coming up.”
[turns to crew leader] “What do we got?”

“Elevator bank, central core. Service elevators here. Air conditioning ducts,
six inches.”

“Pipe alleys here?”
“One, two, three, four, five.”

“Have you got any construction on 81? Anything that can blow up, like
gasoline, fabric cleaner?”

“T don't think so.”

What does this tell us? I mean, other than... Steve McQueen is a badass?
Being an expert isn't telling other people what you know. It's
understanding what questions to ask, and flexibly applying your knowledge
to the specific situation at hand. Being an expert means providing sensible,
highly contextual direction.

What I love about is how he spends the entire first
half of it questioning and deconstructing everything—his field, his expertise,
his own reputation and credentials, even! And then, only then, he cautiously,
slowly builds it back up through a process of continual learning.

Level 0: I overcame obliviousness
I now realize there is something here to learn.
Level 1: I overcame intimidation

I feel I can learn this subject or skill. I know enough about it so that I am not
intimidated by people who know more than me.

Level 2: T overcame incoherence

I no longer feel that I'm pretending or hand-waving. I feel reasonably
competent to discuss or practice. What I say sounds like what I think I know.

Level 3: I overcame competence.

Now I feel productively self-critical, rather than complacently good enough.
I want to take risks, invent, teach, and push myself. I want to be with other
enthusiastic students.

Insight like this is why Mr. Bach is m . He
leaves us with this bit of advice to New Experts:

e Practice, practice, practice!

e Don't confuse experience with expertise.

e Don't trust folklore—but learn it anyway.

e Take nothing on faith. Own your methodology.

e Drive your own education—no one else will.

e Reputation = Money. Build and protect your reputation.
e Relentlessly gather resources, materials, and tools.

e Establish your standards and ethics.

o that trivialize the craft.

» Associate with demanding colleagues.

e Write, speak, and always tell the truth as you see it.

Of course, Mr. Bach is talking about testing here, but I believe his advice
applies equally well to developing expertise in programming, or anything
else you might do in a professional capacity. It starts with questioning
everything, most of all yourself.

So if you want to be an expert in practice rather than in name only, take a
page from Steve McQueen's book. Don't be the guy telling everyone what to
do. Be the guy asking all the questions.

OceanofPDF.com

On Our Project, We’re Always 90
Percent Done

Although I love _pIo , 1 find software project
management books to be some of the most mind-numbingly boring reading
I've ever attempted. I suppose this means I probably shouldn't be a project
manager. The bad news for the is that I effectively am
one.

That's not to say that all software project management books are crap. Just
most of them. One of the few that I've found compelling enough to finish is
Johanna Rothman's “ ”
She co-wrote it with Esther Derby.

The

'n
i":u.,;r (ETH I RS

ehind
losed Doors

DfGreal “ ﬂ

Management

Jihiargie Rothemen
Esther [erlsy

After reading it, you'll realize this is the book they should be handing out to
every newly minted software project manager. And you'll be deeply
depressed because you don't work with any software project managers who
apparently have read it.

I originally discovered Johanna when one of her pieces was cited in the
original Spolsky DBest Software Writing book. Her article on feam
comnpensation basically blew my mind; it forced me to rethink my entire
perspective on being paid to work at a job. You should read it. If you
have a manager, you should get him or her to read it, too.

Since then, I've touched on her work briefly in “Schedule Games” and “You
Are Not Your Job.” But I'd like to focus on a specific aspect of project
management that I'm apparently not very good at. A caller in Podcast

took me to task for m way
back in late April. What was supposed to be "six to eight weeks" became...
well, something more like three months.

My problem is that I'm almost pathologically bad about writing things
down. Unless I'm writing a blog entry, I suppose. I prefer to keep track of
what I'm doing in my head, only anticipating as far ahead as the next item I
plan to work on, while proceeding forward as quickly as I can. I think I fell
prey, at least a little bit, to

‘Look, Mike,” Tomas said. ‘I can hand off my code today and call it 'feature
complete', but I've probably got three weeks of cleanup work to do once I
hand it off.” Mike asked what Tomas meant by ‘cleanup.’ ‘I haven't gotten
the company logo to show up on every page, and I haven't gotten the
agent's name and phone number to print on the bottom of every page. It's
little stuff like that. All of the important stuff works fine. I'm 99-percent
done.’

Do you see the problem here? I know, there are so many it's
, but what's the deepest, most

fundamental problem at work here?

This software developer does not have a detailed list of all the things he
needs to do. Which means, despite adamantly claiming that he is 99
percent done—he has no idea how long development will take! There's
simply no factual basis for any of his schedule claims.

It is the job of a good software project manager to recognize the tell-tale
symptoms of this classic mistake and address them head on before they
derail the project. How? By forcing, encouraging developers to create a
detailed list of everything they need to do. And then breaking that list
down into sub-items. And then adding all the subitems they inevitably
forgot because they didn't think that far ahead. Once you have all those
items on a list, then—and only then—you can begin to estimate how long
the work will take.

Until you've got at least the beginnings of a task list, any concept of
scheduling is utter fantasy. A very pleasant fantasy, to be sure, but the real
world can be extremely unforgiving to such dreams.

Johanna Rothman makes the same point in a recent email newsletter, and
offers specific actions you can take to avoid being stuck 90 percent done:

1. List everything you need to do to finish the big chunk of work. I
include any infrastructure work such as setting up branches in the
source control system.

2. Estimate each item on that list. This initial estimate will help you see
how long it might take to complete the entire task.

3. Now, look to see how long each item on that list will take to finish. If
you have a task longer than one day, break that task into smaller
pieces. Breaking larger tasks into these inch-pebbles is critical for
escaping the 90 percent Done syndrome.

4. Determine a way to show visible status to anyone who's interested. If
you're the person doing the work, what would you have to do to show
your status to your manager? If you're the manager, what do you need
to see? You might need to see lists of test cases or a demo or
something else that shows you visible progress.

5. Since you've got one-day or smaller tasks, you can track your progress
daily. I like to keep a chart or list of the tasks, my initial estimated end
time and the actual end time for each task. This is especially important
for you managers, so you can see if the person is being interrupted and
therefore is multitasking. (See the article about the S

)7

I'm not big on scheduling—or lists—but without the latter, I cannot have
the former. It's like trying to defy the law of gravity. Thus, on our project,
we're always 90 percent done. If you'd like to escape the 90 percent done
ghetto on your software project, don't learn this the hard way, like I did.
Every time someone asks you what your schedule is, you should be able to
point to a list of everything you need to do. And if you can't—the first item
on your task list should be to create that list.

OceanofPDEFE.com

Managing with Trust

recently linked to a great article by Watts Humphrey, who
worked on IBM's OS/360 project: . Watts
opens with an analysis of software project completion data from 2001:

“Figure 2 shows another cut of the Standish data by project size. When
looked at this way, half of the smallest projects succeeded, while none of
the largest projects did. Since large projects still do not succeed even with
all of the project management improvements of the last several years, one
begins to wonder if large-scale software projects are inherently
unmanageable.”

There's a strong correlation between project size and likelihood of failure.
I'm sure that comes as no surprise; it's a lot easier to build a doghouse in
your backyard than it is to build the . What is surprising is
the "radical" management solution he proposes for these large projects:
trust.

“This question gets to the root of the problem with autocratic management
methods: trust. If you trust and empower your software and other high-
technology professionals to manage themselves, they will do extraordinary
work. However, it cannot be blind trust. You must ensure that they know
how to manage their own work, and you must monitor their work to ensure
that they do it properly. The proper monitoring attitude is not to be
distrustful, but instead, to show interest in their work. If you do not trust
your people, you will not get their whole-hearted effort and you will not
capitalize on the enormous creative potential of cohesive and motivated
teamwork. It takes a leap of faith to trust your people, but the results are
worth the risk.”

If you don't to your teammates, can you
even call it a team? Watts also notes that trusting your team is not a
substitute for managing them. Trust shouldn't imply a free pass through
the "how ya doin'?" school of feel-good non-management. That's what Paul
Vick is complaining about in his :

“As for the rest of 'S in

, I can only fall back on Churchill's immortal quote: ‘Democracy is
the worst form of government except for all those others that have been
tried.” There's no question that performance reviews can have terrible
effects, but what's the alternative? Give everyone a pat on the head, say
‘nice work’ and send them off to a nap with some warm milk and
cookies? This isn't to say that there aren't better or worse ways to do
performance reviews, but it seems cheap to dispatch them without
suggesting some alternative.”

And he's right. In order to manage a project, you have to objectively
measure what your teammates are doing—a delicate balancing act that
DeMarco and Lister call :

“In his 1982 book ‘Out of the Crisis,” W. Edwards Deming set forth his now
widely followed ‘Fourteen Points.” Hidden among them, almost as an
afterthought, is point 12B:

“Remove barriers that rob people in management and in engineering of
their right to pride of workmanship. This means [among other things]
abolishment of the annual or merit rating and of management by objectives.

“Even people who think of themselves as Deming-ites have trouble with
this one. They are left gasping, What the hell are we supposed to do
instead? Deming's point is that MBO and its ilk are managerial copouts. By
using simplistic extrinsic motivators to goad performance, managers excuse
themselves from harder matters such as investment, direct personal
motivation, thoughtful team-formation, staff retention, and ongoing analysis
and redesign of work procedures. Our point here is somewhat more limited:
Any action that rewards team members differentially is likely to foster
competition. Managers need to take steps to decrease or counteract this
effect.

“Measuring with Your Eyes Closed: In order to make measurement deliver
on its potential, management has to be perceptive and secure enough to cut
itself out of the loop. Data collected on individual performance has to be
used only to benefit that individual as an exercise in self-assessment. Only
sanitized averages should be made available to the boss. If this is violated
and the data is used for promotion or punitive action, the entire data

collection scheme will come to an abrupt halt. Individuals are inclined to do
exactly what the manager would to improve themselves, so managers don't
really need individual data in order to benefit from it.”

If this sounds difficult, well, that's because it is. Managing people is
unbelievably difficult. Getting code to compile and pass all your unit tests?
Piece of cake. Getting your team to work together? That's another matter
entirely. Joel Spolsky , elaborating on his
position:

“The Shipit stupidity replaced a genuine form of employees being
recognized for shipping a product (being given a copy of the shrinkwrapped
box) with a ersatz form of recognition which made it pretty clear that
management didn't even know that employees were already motivated for
shipping software. And it's a classic case of gold-starism. It was universally
derided by the hard core old-school developers that make Microsoft what it
is today.”

Joel's problem with the Shipit awards was exactly the pitfall that DeMarco
and Lister described. Managerial trust relationships take investment and
work; facile shortcuts like the Shipit award undermine this
relationship. Even if you're only building a doghouse, avoid taking these
shortcuts.

OceanofPDEFE.com

Boyd’s Law of Iteration

forwarded me a link to Roger Sessions'
yesterday. Even though it's got
in the title, the article is surprisingly good.

I particularly liked the unusual analogy Roger chose to illustrate the
difference between iterative and recursive approaches to software
development. It starts with Air Force 'd researching a
peculiar anomaly in the performance of 1950's era jet fighters:

“Colonel John Boyd was interested not just in any dogfights, but
specifically in dogfights between and . As an ex-pilot and
accomplished aircraft designer, Boyd knew both planes very well. He knew
the MiG-15 was a better aircraft than the F-86. The MiG-15 could climb
faster than the F-86. The MiG-15 could turn faster than the F-86. The MiG-
15 had better distance visibility.

“The F-86 had two points in its favor. First, it had better side visibility.
While the MiG-15 pilot could see further in front, the F-86 pilot could see
slightly more on the sides. Second, the F-86 had a hydraulic flight control.
The MiG-15 had a manual flight control.

“The standing assumption on the part of airline designers was that
maneuverability was the key component of winning dogfights. Clearly, the
MiG-15, with its faster turning and climbing ability, could outmaneuver the
F-86.

“There was just one problem with all this. Even though the MiG-15 was
considered a superior aircraft by aircraft designers, the F-86 was favored by
pilots. The reason it was favored was simple: in one-on-one dogfights with
MiG-15s, the F-86 won nine times out of ten.”

How can an inferior aircraft consistently win over a superior aircraft? Boyd,
who was himself one of the best dogfighters in history, had a theory:

“Boyd decided that the primary determinant to winning dogfights was not
observing, orienting, planning, or acting better. The primary determinant to

winning dogfights was observing, orienting, planning, and acting faster. In
other words, how quickly one could iterate. Speed of iteration, Boyd
suggested, beats quality of iteration.

“The next question Boyd asked is this: why would the F-86 iterate faster?
The reason, he concluded, was something that nobody had thought was
particularly important. It was the fact that the F-86 had a hydraulic flight
stick whereas the MiG-15 had a manual flight stick.

IF

i |
B -
- W *

i
=]
o
s]

|
s

“Without hydraulics, it took slightly more physical energy to move the
MiG-15 flight stick than it did the F-85 flight stick. Even though the MiG-
15 would turn faster (or climb higher) once the stick was moved, the
amount of energy it took to move the stick was greater for the MiG-15 pilot.

“With each iteration, the MiG-15 pilot grew a little more fatigued than the
F-86 pilot. And as he gets more fatigued, it took just a little bit longer to
complete his OOPA loop. The MiG-15 pilot didn't lose because he got
outfought. He lost because he got out-OOPAed.”

This leads to Boyd's Law of Iteration: speed of iteration beats quality of
iteration.

You'll find this same theme echoed throughout every discipline of modern
software engineering:

e Unit tests should be , SO you can run them with every
build.

e Usability tests work best if you

e Most agile approaches recommend iterations

e Software testing is about

e Functional specifications are best when they're

When in doubt, iterate faster.

OceanofPDEF.com

Overnight Success: It Takes Years

Paul Buchbheit, the original lead developer of GMail, notes that

“We starting working on Gmail in August 2001. For a long time, almost
everyone disliked it. Some people used it anyway because of the search, but
they had endless complaints. Quite a few people thought that we should kill
the project, or perhaps ‘reboot’ it as an enterprise product with native client
software, not this crazy Javascript stuff. Even when we got to the point of
launching it on April 1, 2004—two and a half years after starting work on it
—many people inside of Google were predicting doom. The product was
too weird, and nobody wants to change email services. I was told that we
would never get a million users.

“Once we launched, the response was surprisingly positive, except from the
people who hated it for a variety of reasons. Nevertheless, it was frequently
described as ‘niche,” and ‘not used by real people outside of silicon valley.’

“Now, almost seven and a half years after we started working on Gmail, I
see [an describing how Gmail grew 40 percent last year, compared to
two percent for Yahoo and negative seven percent for Hotmail].”

Paul has since left Google and now works at his own startup, :
Many industry insiders have not been kind to FriendFeed. Stowe Boyd even
went so far as to . Paul takes this criticism in stride:

“Creating an important new product generally takes time. FriendFeed needs
to continue changing and improving, just as Gmail did six years ago.
FriendFeed shows a lot of promise, but it's still a “work in progress.’

“My expectation is that big success takes years, and there aren't many
counter-examples (other than YouTube, and they didn't actually get to the
point of making piles of money just yet). Facebook grew very fast, but it's
almost five years old at this point. Larry and Sergey started working on
Google in 1996—when I started there in 1999, few people had heard of it

yet.

“This notion of overnight success is very misleading, and rather harmful. If
you're starting something new, expect a long journey. That's no excuse to
move slow though. To the contrary, you must move very fast, otherwise you
will never arrive, because it's a long journey! This is also why it's important
to be frugal—you don't want to J

Stowe Boyd illustrated with a graph comparing
Twitter and FriendFeed traffic. Allow me to update Mr. Boyd's graph with
another data point of my own.

Unique Visitors §if compete

=14t |
4 5M
|
a twitter
35M
am
25M

. friendfeed
Dgleu;;? B -F_et:: I;I—Ei . Ap: ;8 Jun 08 A 03 . Oct 08 Dec 03
stackoverfiow

I find Paul's attitude refreshing, because I take the same attitude toward
our startup, . I have zero expectation or even desire for
overnight success. What I am planning is several years of grinding through
constant, steady improvement.

This business plan isn't much different from my career development plan:
success takes years. And when I say years, I really mean it! Not as some
cliched regurgitation of "work smarter, not harder." I'm talking actual
calendar years. You know, of the 12 months, 365 days variety. You will
literally have to spend multiple years of your life grinding away at this stuff,
waking up every day and doing it over and over, practicing and gathering
feedback each day to continually get better. It might be unpleasant at times
and even downright un-fun occasionally, but it's necessary.

This is hardly unique or interesting advice. Peter Norvig's classic
already covered this topic far better

than I.

“Researchers have shown it takes about ten years to develop expertise in
any of a wide variety of areas, including chess playing, music composition,
telegraph operation, painting, piano playing, swimming, tennis, and
research in neuropsychology and topology. The key is deliberative practice:
not just doing it again and again, but challenging yourself with a task that is
just beyond your current ability, trying it, analyzing your performance while
and after doing it, and correcting any mistakes. Then repeat. And repeat
again.

“There appear to be no real shortcuts: even Mozart, who was a musical
prodigy at age four, took 13 more years before he began to produce world-
class music. The Beatles seemed to burst onto the scene with a string of
number one hits and an appearance on the Ed Sullivan show in 1964. But
they had been playing small clubs in Liverpool and Hamburg since 1957,
and while they had mass appeal early on, their first great critical success,
‘Sgt. Peppers,’ was released in 1967.”

Honestly, I look forward to waking up someday two or three years from
now and doing the exact same thing I did today: working on the Stack
Overflow code, eking out yet another tiny improvement or useful feature.
Obviously we want to succeed. But on some level, success is irrelevant,
because the process is inherently satisfying. Waking up every day and doing
something you love—even better, surrounded by a community who loves it
too—is its own reward. Despite being a metric ton of work.

The blog is no different. I often give aspiring bloggers -
: if you're starting a blog, don't expect anyone to read it for six
months. If you do, I can guarantee you will be sorely disappointed.
However, if you can stick to a posting schedule and produce one or two
quality posts every week for an entire calendar year... then, and only then,
can you expect to see a trickle of readership. I started this blog in 2004, and
it took a solid three years of writing three to five times per week before it
anything resembling popularity within the software development
community.

I fully expect to be writing on this blog, in one form or another, for the rest
of my life. It is a part of who I am. And with that bit of drama out of the

way, I have no illusions: ultimately, I'm just the guy_on the internet who
writes that blog.

HI. DO \WELL, HEMHEH.| | WHAT) THE GNEON g OH.
T KNOW | YOU MIGHT., 2/ THE WORLD | 4L MINEIS
youz LJIDE LIER. THE ONE
P WITH
LINKS.

A
w

= - i':!'
S

4
HI..I'M THAT UNCLEVER
GUY ON THE INTERNET.

7Y AND A SECTION
YES!) AN TiE
AUTHOR >

YES! ¥ A vostives
LUITH CLEVE
W\ WTTLE INSIGHTS 2

.fl-‘l

ol
L e R T

That's perfectly fine by me. I never said I was clever.

Whether you ultimately achieve readers, or pageviews, or whatever high
score table it is we're measuring this week, try to remember it's worth doing
because, well—it's worth doing.

And if you keep doing it long enough, who knows? You might very well
wake up one day and find out you're an overnight success.

Become a Hyperink reader. Get a special surprise.

Like the book? Support our author and leave a comment!

OceanofPDF.com

II.

Programming

OceanofPDFE.com

How to Become a Better Programmer
by Not Programming

Last year in s, | mentioned that I was reading
. It's a great collection of interviews with famous
programmers circa 1986. All the interviews are worth reading, but the
interview with Bill Gates has one particular answer that cuts to the bone:

Does accumulating experience through the years necessarily make
programming easier?

Bill Gates: “No. I think after the first three or four years, it's pretty cast in
concrete whether you're a good programmer or not. After a few more years,
you may know more about managing large projects and personalities, but
after three or four years, it's clear what you're going to be. There's no one at
Microsoft who was just kind of mediocre for a couple of years, and then
just out of the blue started optimizing everything in sight. I can talk to
somebody about a program that he's written and know right away whether
he's really a good programmer.”

We already know

But the dirty little secret of the software development industry is that this is
also true even for people who can program:

. A mediocre developer can
program his or her heart out for four years, but that won't magically
transform them into a good developer. And the good developers always
seem to have a natural knack for the stuff from the very beginning.

I agree with Bill. From what I've seen, there's just no crossing the skill
chasm as a software developer. You've either got it, or you don't. No amount
of putting your nose to the grindstone will change that. But if you accept
that premise, it also presents us with a paradox: if experience doesn't make
you a better programmer, what does? Are our skill levels written in stone?
Is it impossible to become a better programmer?

To answer that question, you have to consider the obsessive nature of
programming itself. Good developers are good at programming. Really
good at programming. You might even say fanatically good. If they're
anything like me, they've spent nearly every waking moment in front of a
computer for most of their lives. And naturally, they get better at it over
time. Competent software developers have already mastered the skill of
programming, which puts them in a very select club. But if you're already in
the 97th percentile for programming aptitude, what difference does a few
more percentile points really make in the big scheme of things?

The older I get, the more I believe that the only way to become a better
programmer is by not programming. You have to come up for air, put
down the compiler for a moment, and take stock of what you're really
doing. Code is important, but it's

This offers a nice bit of related advice:

“Over the years, I came to realize that my best work has always involved
subjects that interested me, or—even better—subjects about which I've
become interested, and even passionate about, through the very process of
doing design work. I believe I'm still passionate about graphic design. But
the great thing about graphic design is that it is almost always about
something else. Corporate law. Professional football. Art. Politics. Robert
Wilson. And if T can't get excited about whatever that something else is, I
really have trouble doing a good work as a designer. To me, the conclusion
is inescapable: the more things you're interested in, the better your work
will be.”

Passion for coding is a wonderful thing. But it's all too easy to mindlessly,
reflexively entrench yourself deeper and deeper into a skill that you've
already proven yourself more than capable at many times over. To truly
become a better programmer, you have to to cultivate passion for
everything else that goes on around the programming.

Bill Gates, in a 2005 interview,

“The nature of these jobs is not just closing your door and doing coding,
and it's easy to get that fact out. The greatest missing skill is somebody
who's both good at understanding the engineering and who has good
relationships with the hard-core engineers, and bridges that to working with

the customers and the marketing and things like that. And so that sort of
engineering management career track, even amongst all the people we have,
we still fall short of finding people who want to do that, and so we often
have to push people into it.

“I'd love to have people who come to these jobs wanting to think of it as an
exercise in people management and people dynamics, as well as the basic
engineering skills. That would be absolutely amazing.

“And we can promise those people within two years of starting that career
most of what they're doing won't be coding, because there are many career
paths, say, within that Microsoft Office group where you're part of creating
this amazing product, you get to see how people use it, you get to then
spend two years, build another version, and really change the productivity
in this very deep way, take some big bets on what you're doing and do some
things that are just responsive to what that customer wants.”

You won't—you cannot—become a better programmer through sheer force
of programming alone. You can only complement and enhance your
existing programming skills by branching out. Learn about your users.
Learn about the industry. Learn about your business.

The more things you are interested in, the better your work will be.

OceanofPDEF.com

The Broken Window Theory

In a previous entry, I touched on the broken window theory. You might be
familiar with the Pragmatic Progammers' take on this:

“Don't leave "broken windows" (bad designs, wrong decisions, or poor
code) unrepaired. Fix each one as soon as it is discovered. If there is
insufficient time to fix it properly, then board it up. Perhaps you can
comment out the offending code, or display a "Not Implemented" message,
or substitute dummy data instead. Take some action to prevent further
damage and to show that you're on top of the situation.

“We've seen clean, functional systems deteriorate pretty quickly once
windows start breaking. There are other factors that can contribute to
software rot, and we'll touch on some of them elsewhere, but neglect
accelerates the rot faster than any other factor.”

That's excellent advice for programmers, but it's not the complete story.

The broken window theory is based on an 7
published in 1982. It's worth reading the article to get a deeper
understanding of the human factors driving the theory:

“Second, at the community level, disorder and crime are usually
inextricably linked, in a kind of developmental sequence. Social
psychologists and police officers tend to agree that if a window in a
building is broken and is left unrepaired, all the rest of the windows will
soon be broken. This is as true in nice neighborhoods as in rundown ones.
Window-breaking does not necessarily occur on a large scale because some
areas are inhabited by determined window-breakers whereas others are
populated by window-lovers; rather, one unrepaired broken window is a
signal that no one cares, and so breaking more windows costs nothing. (It
has always been fun.)

“Philip Zimbardo, a Stanford psychologist, reported in 1969 on some
experiments testing the broken-window theory. He arranged to have an
automobile without license plates parked with its hood up on a street in the
Bronx and a comparable automobile on a street in Palo Alto,
California. The car in the Bronx was attacked by ‘vandals’ within ten
minutes of its ‘abandonment.” The first to arrive were a family—father,
mother, and young son—who removed the radiator and battery. Within
twenty-four hours, virtually everything of value had been removed. Then
random destruction began—windows were smashed, parts torn off,
upholstery ripped. Children began to use the car as a playground. Most of
the adult "vandals" were well-dressed, apparently clean-cut whites. The car
in Palo Alto sat untouched for more than a week. Then Zimbardo smashed
part of it with a sledgehammer. Soon, passersby were joining in. Within a
few hours, the car had been turned upside down and utterly destroyed.
Again, the “‘vandals’ appeared to be primarily respectable whites.

“Untended property becomes fair game for people out for fun or plunder
and even for people who ordinarily would not dream of doing such things
and who probably consider themselves law-abiding. Because of the nature
of community life in the Bronx—its anonymity, the frequency with which
cars are abandoned and things are stolen or broken, the past experience of
‘no one caring’—vandalism begins much more quickly than it does in staid
Palo Alto, where people have come to believe that private possessions are

cared for, and that mischievous behavior is costly. But vandalism can occur
anywhere once communal barriers—the sense of mutual regard and the
obligations of civility—are lowered by actions that seem to signal that ‘no
one cares.’”

There's even ect. What's fascinating to me is that
the mere perception of disorder—even with seemingly irrelevant petty
crimes like graffiti or minor vandalism—precipitates a negative feedback
loop that can result in total disorder:

“We suggest that "untended" behavior also leads to the breakdown of
community controls. A stable neighborhood of families who care for their
homes, mind each other's children, and confidently frown on unwanted
intruders can change, in a few years or even a few months, to an
inhospitable and frightening jungle. A piece of property is abandoned,
weeds grow up, a window is smashed. Adults stop scolding rowdy children;
the children, emboldened, become more rowdy. Families move out,
unattached adults move in. Teenagers gather in front of the corner store.
The merchant asks them to move; they refuse. Fights occur. Litter
accumulates. People start drinking in front of the grocery; in time, an
inebriate slumps to the sidewalk and is allowed to sleep it off. Pedestrians
are approached by panhandlers.

“At this point it is not inevitable that serious crime will flourish or violent
attacks on strangers will occur. But many residents will think that crime,
especially violent crime, is on the rise, and they will modify their behavior
accordingly. They will use the streets less often, and when on the streets
will stay apart from their fellows, moving with averted eyes, silent lips, and
hurried steps. ‘Don't get involved.” For some residents, this growing
atomization will matter little, because the neighborhood is not their ‘home’
but ‘the place where they live.” Their interests are elsewhere; they are
cosmopolitans. But it will matter greatly to other people, whose lives derive
meaning and satisfaction from local attachments rather than worldly
involvement; for them, the neighborhood will cease to exist except for a
few reliable friends whom they arrange to meet.”

Programming is insanely detail oriented, and perhaps this is why: if you're
not on top of the details, the perception is that things are out of control, and

it's only a matter of time before your project spins out of control. Maybe we
should be sweating the small stuff.

OceanofPDEF.com

Programming: Love It or Leave It

In a recent Joel on Software forum post A
one programmer wonders if software development is the right career choice
in the face of broad economic uncertainty:

“After reading the disgruntled posts here from long time programmers and
hearing so much about ageism and outsourcing, I'm thinking of leaving the
industry. What is a good industry to get into where your programming skills
would put you at an advantage?”

Joel Spolsky responded:

“Although the tech industry is not immune, programming jobs are not really
being impacted. Yes, there are fewer openings, but there are still openings
(see my job board for evidence). I still haven't met a great programmer who
doesn't have a job. I still can't fill all the openings at my company.

“Our pay is great. There's no other career except Wall Street that regularly
pays kids $75,000 right out of school, and where so many people make six
figures salaries for long careers with just a bachelors degree. There's no
other career where you come to work every day and get to invent, design,
and engineer the way the future will work.

“Despite the occasional idiot bosses and workplaces that forbid you from
putting up Dilbert cartoons on your cubicle walls, there's no other industry
where workers are treated so well. Jesus you're spoiled, people. Do you
know how many people in America go to jobs where you need permission
to go to the bathroom?

“Stop the whining, already. Programming is a fantastic career. Most
programmers would love to do it even if they didn't get paid. How many
people get to do what they love and get paid for it? 2 percent? 5 percent?”

I tend to agree with Joel's brand of tough love. What he seems to be saying
—after taking my usual poetic license—is this:

Programming: love it or leave it.

Unless you're fortunate enough to work for a top tier software development
company, like Google, Microsoft, or Apple, you've probably experienced
first hand the hu . I'm betting
you've also wondered more than once wh
ram. Even if that's what their job description says.

Over the last twenty years, I've worked with far too many programmers
who honestly had no business being paid to be a programmer. Now, I'm
not talking about your average programmer here. We're all human, and we
all make mistakes. I'm talking about . People that
actively give programming a bad name, and you, as their coworker, a
constant headache.

Like Joel, I'm not ready to call the current conditions

yet, because business is still quite good. But one of the (very) few
bright spots of the previous bubble was that it weeded out all the people
who didn't truly love software development. Once the incentive to
become an overnight dot-com genius programmer millionaire was gone,
computer science enrollment suddenly dropped precipitously at colleges
across the country. The only people left applying for programming jobs
were the true freaks and geeks who, y'know, . The kind of
people I had originally enjoyed working with so much. At least until a
bunch of careerist gold diggers suddenly showed up and started polluting
our workplace.

As much as the dot com bubble sucked, I was intensely glad to see these
people go. Now I'm wondering if the current economic conditions are an
opportunity to clean house again.

I mean this in the nicest possible way, but not everyone should be a
programmer. How often have you wished that a certain coworker of yours
would suddenly have an epiphany one day and decide that this whole
software engineering thing just isn't working out for them? How do you tell
someone that the quality of their work is terrible and the
ob—so much so that they should literally quit and pursue a new
career? I've wanted to many times, but I never had the guts.

Joel implied that good programmers love programming so much they'd do it
for no pay at all. I won't go quite that far, but I will note that the best

programmers I've known have all had a lifelong passion for what they do.
There's no way a minor economic blip would ever convince them they
should do anything else. No way. No how.

So if a programmer ever hints, even in passing, that they might possibly
want to exit the field—they probably should. I'm not saying you should be a
jerk about it, obviously. But if someone has any doubt at all about
programming as a career choice, they should be encouraged to explore
alternatives—and make room for another programmer who

Then again, maybe I'm not the best person to ask. I spent Christmas Eve

u . I'm on holiday right now, sitting in a hotel room in Santa
Barbara, and you know what I spent the last two nights doing until the wee
hours of the morning? Writing code to improve . Oh yeah,
and this blog post.

So I might be a little biased.

QOceanofPDFE.com

Some Lessons from Forth

It's easy to get caught up in the "newer is better" mindset of software
development and forget that . Not
everything we do is obsolete in four years. The , which
outlines Charles Moore's guiding principles in creating and implementing
the e, is an excellent illustration of the timelessness of

ancient computer wisdom:

1. Keep it simple: As the number of capabilities you add to a program
increases, the complexity of the program increases exponentially. The
problem of maintaining compatibility among these capabilities, to say
nothing of some sort of internal consistency in the program, can easily
get out of hand. You can avoid this if you apply the Basic Principle.
You may be acquainted with an operating system that ignored the
Basic Principle. It is very hard to apply. All the pressures, internal and
external, conspire to add features to your program. After all, it only
takes a half-dozen instructions, so why not? The only opposing
pressure is the Basic Principle, and if you ignore it, there is no
opposing pressure.

2. Do not speculate: Do not put code in your program that might be
used. Do not leave hooks on which you can hang extensions. The
things you might want to do are infinite; that means that each has 0
probability of realization. If you need an extension later, you can code
it later—and probably do a better job than if you did it now. And if
someone else adds the extension, will he notice the hooks you left?
Will you document this aspect of your program?

3. Do it yourself: The conventional approach, enforced to a greater or
lesser extent, is that you shall use a standard subroutine. I say that you
should write your own subroutines. Before you can write your own
subroutines, you have to know how. This means, to be practical, that
you have written it before; which makes it difficult to get started. But

give it a try. After writing the same subroutine a dozen times on as
many computers and languages, you'll be pretty good at it.

I covered the first two points before in . Point 3 is more
subtle. It seems to fly in the face of , but what he's
really saying—and I agree—is that you have to make your own mistakes
to truly learn. There's a world of difference between someone explaining
"you should always index your tables because it's a best practice,” and
having your app get progressively slower as records are added to the table.
(You laugh, but I've worked with developers who did this.) You learn "why"
a lot faster when you're actually experiencing it instead of passively reading
about it.

Moore characterizes simplicity as a force that must be applied instead of
a passive goal. And he's right—all too often, I see developers failing to
make the hard choices necessary to keep their applications simple. It's
easier to just say_ves to everything.

OceanofPDEF.com

The Joy of Deletion

I generally dislike these kinds of "Me, too!" posts, but I have to make an
exception for Ned Batchelder's . I've
often run into this phenomenon with other developers, and it bugged the
heck out of me, although I couldn't quantify exactly why. Well, now I can:

“If you have a chunk of code you don't need any more, there's one big
reason to delete it for real rather than leaving it in a disabled state: to reduce
noise and uncertainty. Some of the worst enemies a developer has are noise
or uncertainty in his code, because they prevent him from working with it
effectively in the future.

“A chunk of code in a disabled state just causes uncertainty. It puts
questions in other developers' minds:

¢ Why did the code used to be this way?
e Why is this new way better?
e Are we going to switch back to the old way?
e How will we decide?
“If the answer to one of these questions is important for people to know,

then write a comment spelling it out. Don't leave your co-workers
guessing.”

I have been angrily accused of deleting someone's commented code on
more than one occasion. I say, give me a reason not to delete it, and [won't.
Otherwise, it's fair game. In my experience this kind of "oh, I'll get back to
it" code just sits in the codebase forever, junking up the works for every
future developer.

OceanofPDE.com

Separating Programming Sheep from
Non-Programming Goats

A bunch of people have linked to this vaper, which proposes a
way to separate programming sheep from non-programming goats in
computer science classes—long before the students have ever touched a
program or a programming language:

“All teachers of programming find that their results display a 'double hump'.
It is as if there are two populations: those who can [program], and those
who cannot [program], each with its own independent bell curve. Almost all
research into programming teaching and learning have concentrated on
teaching: change the language, change the application area, use an IDE and
work on motivation. None of it works, and the double hump persists. We
have a test which picks out the population that can program, before the
course begins. We can pick apart the double hump. You probably don't
believe this, but you will after you hear the talk. We don't know exactly
how/why it works, but we have some good theories.”

I wasn't aware that the dichotomy between programmers and non-
programmers was so pronounced at this early stage. Dan Bricklin touched
on this topic in his essay, “ .” But evidently it's
common knowledge amongst those who teach computer science:

“Despite the enormous changes which have taken place since electronic
computing was invented in the 1950s, some things remain stubbornly the
same. In particular, most people can't learn to program: between 30 percent
and 60 percent of every university computer science department's intake fail
the first programming course. Experienced teachers are weary but never
oblivious of this fact; brighteyed beginners who believe that the old ones
must have been doing it wrong learn the truth from bitter experience; and so
it has been for almost two generations, ever since the subject began in the
1960s.”

You may think the test they're proposing to determine programming
aptitude is complex, but it's not. Here's question one, verbatim:

Read the following statements and tick the box next to the correct
answer.

int a = 10;int b = 20;a = b;The new values of aand b are:]]a=20 b=0[]
a=20 b=20[]a=0 b=10[]a=10 b=10[]a=30 b=20[]a=30 b
=0[]a=10 b=30[]a=0 b=30[]a=10 b=20[]a=20 b=10

This test seems trivial to professional programmers, but remember, it's
intended for students who have never looked at a line of code in their lives.
The other 12 questions are all variations on the same assignment theme.

The authors of the paper posit that the primary hurdles in computer science
are..

1. assignment and sequence

2. recursion / iteration

3. concurrency*®

. in that order. Thus, we start by testing the very first hurdle novice

programmers will encounter: assignment. The test results divided the
students cleanly into three groups:

e 44 percent of students formed a consistent mental model of how
assignment works (even if incorrect!)

e 39 percent students never formed a consistent model of how
assignment works.

e 8 percent of students didn't give a damn and left the answers blank.

The test was administered twice; once at the beginning, before any
instruction at all, and again after three weeks of class. The striking thing is
that there was virtually no movement at all between the groups from the
first to second test. Either you had a consistent model in your mind

immediately upon first exposure to assignment, the first hurdle in
programming—or else you never developed one!

The authors found an extremely high level of correlation between success at
programming and forming a consistent mental model:

“Clearly, Dehnahdi's test is not a perfect divider of programming sheep
from non-programming goats. Nevertheless, if it were used as an
admissions barrier, and only those who scored consistently were admitted,
the pass/fail statistics would be transformed. In the total population 32 out
of 61 (52 percent) failed; in the first-test consistent group only 6 out of 27
(22 percent). We believe that we can claim that we have a predictive test
which can be taken prior to the course to determine, with a very high degree
of accuracy, which students will be successful. This is, so far as we are
aware, the first test to be able to claim any degree of predictive success.”

I highly recommend reading through)aper, which was remarkably
entertaining for what I thought was going to be a dry, academic paper.
Instead, it reads like a blog entry. It's filled with interesting insights like this
one:

“It has taken us some time to dare to believe in our own results. It now
seems to us, although we are aware that at this point we do not have
sufficient data, and so it must remain a speculation, that what distinguishes
the three groups in the first test is their different attitudes to
meaninglessness.

“Formal logical proofs, and therefore programs formal logical proofs that
particular computations are possible, expressed in a formal system called a
programming language are utterly meaningless. To write a computer
program you have to come to terms with this, to accept that whatever you
might want the program to mean, the machine will blindly follow its
meaningless rules and come to some meaningless conclusion. In the test the
consistent group showed a pre-acceptance of this fact: they are capable of
seeing mathematical calculation problems in terms of rules, and can follow
those rules wheresoever they may lead. The inconsistent group, on the other
hand, looks for meaning where it is not. The blank group knows that it is
looking at meaninglessness, and refuses to deal with it.”

Everyone should know how to use a computer, but not everyone needs to be
a programmer. But it's still a little disturbing that the act of programming
seems literally unteachable to a sizable subset of incoming computer
science students. Evidently not everyone is as fascinated by meaningless
rules and meaningless conclusions as we are; I can't imagine why not.

OceanofPDEFE.com

Are You Following the Instructions on
the Paint Can?

We're currently undertaking some painting projects at home. Which means
I'll be following the instructions on the paint can.

AT ST

But what would happen if I didn't follow the instructions on the paint can?
Here's a list of common interior painting mistakes:

The single most common mistake in any project is failure to read and
follow manufacturer's instructions for tools and materials being used. In

regard to painting, the most common mistakes are:

e Not preparing a clean, sanded, and primed (if needed) surface.

Failure to mix the paints properly.

Applying too much paint to the applicator.

Using water-logged applicators.

Not solving dampness problems in the walls or ceilings.

Not roughing up enamel paint before painting over it.

What I find particularly interesting is that none of the mistakes on this
checklist have anything to do with my skill as a painter. My technical
proficiency (or lack thereof) as a painter doesn't even register! To guarantee
a reasonable level of quality, you don't have to spend weeks practicing your
painting skills. You don't even have to be a good painter. All you have to do
is follow the instructions on the paint can!

Sure, it seems like common sense. But take a close look at the houses on the
streets you drive by. Each street has that one house where the owners, for
whatever reason, chose not to follow the instructions on the paint can.

For years, software development was an entire subdivision of badly painted
houses. But the field of software development is now mature enough that
we have a number of to . Here's

yolsky, circa 2000:

. Do you use source control?

. Can you make a build in one step?

. Do you make daily builds?

. Do you have a bug database?

. Do you fix bugs before writing new code?
. Do you have an up-to-date schedule?

. Do you have a spec?

. Do programmers have quiet working conditions?

O o0 NN O Ul AW DN R

. Do you use the best tools money can buy?

—_
o

. Do you have testers?

11. Do new candidates write code during their interview?

12. Do you do hallway usability testing?
The type of paint can you choose—and the instructions you follow—are
highly debatable, of course. But make sure, at the very least, you're

following the instructions on the paint can for your software development
project.

QOceanofPDFE.com

Curly’s Law: Do One Thing

In Outliving_the Great Variable Shortage, Tim Ottinger invokes Curly's
Law:

“A variable should mean one thing, and one thing only. It should not mean
one thing in one circumstance, and carry a different value from a different
domain some other time. It should not mean two things at once. It must not
be both a floor polish and a dessert topping. It should mean One Thing, and
should mean it all of the time.”

The late, great Jack Palance played grizzled cowboy Curly Washburn in the
1991 comedy “City_Slickers.” Curly's Law is defined in this bit of dialog
from the movie:

Curly: Do you know what the secret of life is?
Curly: This. [holds up one finger]
Mitch: Your finger?

Curly: One thing. Just one thing. You stick to that and the rest don't mean
shit.

Mitch: But what is the "one thing?"

Curly: [smiles] That's what you have to find out.

Curly's Law, Do One Thing, is reflected in several core principles of
modern software development:

If you have more than one way to express the same thing, at some point the
two or three different representations will most likely fall out of step with
each other. Even if they don't, you're guaranteeing yourself the headache of
maintaining them in parallel whenever a change occurs. And
changewill occur. Don't repeat yourself is important if you want flexible
and maintainable software.

Each and every declaration of behavior should occur once, and only once.
This is one of the main goals, if not the main goal, when refactoring code.
The design goal is to eliminate duplicated declarations of behavior,
typically by merging them or replacing multiple similar implementations
with a unifying abstraction.

Repetition leads to inconsistency and code that is subtly broken, because
you changed only some repetitions when you needed to change all of them.
Often, it also means that you haven't properly thought through the
organization of your code. Any time you see duplicate code, that's a danger
sign. Complexity is a cost; don't pay it twice.

Although Curly's Law definitely applies to normalization and removing
redundancies, Do One Thing is more nuanced than the various restatements
of Do Each Thing Once outlined above. It runs deeper. Bob Martin refers to
it as

The Single Responsibility Principle says that a class should have one, and
only one, reason to change. As an example, imagine the following class:

class Employee{ public Money calculatePay() public void save() public
String reportHours()}

This class violates the SRP because it has three reasons to change:

1. The business rules having to do with calculating pay.
2. The database schema.

3. The format of the string that reports hours.

We don't want a single class to be impacted by these three completely
different forces. We don't want to modify the Employee class every time the
accounts decide to change the format of the hourly report, or every time the
DBAs make a change to the database schema, as well as every time the
managers change the payroll calculation. Rather, we want to separate these
functions out into different classes so that they can change independently of
each other.

Curly's Law is about choosing a single, clearly defined goal for any
particular bit of code: Do One Thing. That much is clear. But in choosing
one thing, you are ruling out an infinite universe of other possible things
you could have done. Curly's Law also means consciously choosing what
your code won't do.This is much more difficult than choosing what to do,
because it runs counter to all the natural generalist tendencies of software
developers. It could mean breaking code apart, violating traditional OOP
rules, or introducing duplicate code. It's taking one step backward to go two
steps forward.

Each variable, each line of code, each function, each class, each project
should Do One Thing. Unfortunately, we usually don't find out what that
one thingis until we've

OceanofPDEF.com

The Ultimate Code Kata

As I was paging through Steve Yegge's . of work recently, I
was struck by a 2005 entry on '

“Contrary to what you might believe, merely doing your job every day
doesn't qualify as real practice. Going to meetings isn't practicing your
people skills, and replying to mail isn't practicing your typing. You have to
set aside some time once in a while and do focused practice in order to get
better at something.

“I know a lot of great engineers—that's one of the best perks of working at
Amazon—and if you watch them closely, you'll see that they practice
constantly. As good as they are, they still practice. They have all sorts of
ways of doing it, and this essay will cover a few of them.

“The great engineers I know are as good as they are because they practice
all the time. People in great physical shape only get that way by working out
regularly, and they need to keep it up, or they get out of shape. The same
goes for programming and engineering.”

It's an important distinction. I may drive to work every day, but I'm far from
a professional driver. Similarly, programming every day may not be enough
to make you a professional programmer. So what can turn someone into a
professional driver or programmer? What do you do to practice?

The answer lies in the Scientific American article

“Ericsson argues that what matters is not experience per se but ‘effortful
study,” which entails continually tackling challenges that lie just beyond
one's competence. That is why it is possible for enthusiasts to spend tens of
thousands of hours playing chess or golf or a musical instrument without
ever advancing beyond the amateur level and why a properly trained student
can overtake them in a relatively short time. It is interesting to note that time
spent playing chess, even in tournaments, appears to contribute less than
such study to a player's progress; the main training value of such games is to
point up weaknesses for future study.”

Effortful study means constantly tackling problems at the very edge of your
ability. Stuff you may have a high probability of failing at. Unless you're
, you're probably not growing professionally. You
have to seek out those challenges and push yourself beyond your comfort
limit.

Those challenges can sometimes be found on the job, but they don't have to
be. Separating the practicing from the profession is often referred to as

The concept of kata, a series of choreographed practice movements, is
borrowed from the martial arts.

If you're looking for some examples of code kata—ways to practice effortful
study and hone your programming skills—5Steve's article has some excellent
starting points. He calls them practice drills:

. Write your resume. List all your relevant skills, then note the ones that

will still be needed in 100 years. Give yourself a 1-10 rating in each
skill.

. Make a list of programmers who you admire. Try to include some you
work with, since you'll be borrowing them for some drills. Make one or
two notes about things they seem to do well—things you wish you
were better at.

. Go to Wikipedia's , scroll down to the
"Prominent pioneers in computer science" section, pick a person from
the list, and read about them. Follow any links from there that you
think look interesting.

. Read through someone else's code for 20 minutes. For this drill,
alternate between reading great code and reading bad code; they're both
instructive. If you're not sure of the difference, ask a programmer you
respect to show you examples of each. Show the code you read to
someone else, and see what they think of it.

. Make a list of your 10 favorite programming tools: the ones you feel
you use the most, the ones you almost couldn't live without. Spend an
hour reading the docs for one of the tools in your list, chosen at
random. In that hour, try learn some new feature of the tool that you
weren't aware of, or figure out some new way to use the tool.

. Pick something youTre good at that has nothing to do with
programming. Think about how the professionals or great masters of
that discipline do their practice. What can you learn from them that you
can apply to programming?

. Get a pile of resumes and a group of reviewers together in a room for
an hour. Make sure each resume is looked at by at least three reviewers,
who write their initials and a score (1-3). Discuss any resumes that had
a wide discrepancy in scoring.

. Listen in on a . Write up your feedback
afterwards, cast your vote, and then talk about the screen with the
screener to see if you both reached the same conclusions.

. Conduct a technical interview with a candidate who's an expert in some
field you don't know much about. Ask them to explain it to you from

the ground up, assuming no prior knowledge of that field. Try hard to
follow what they're saying, and ask questions as necessary.

10. Get yourself invited to someone else's technical interview. Listen and
learn. Try to solve the interview questions in your head while the
candidate works on them.

11. Find a buddy for trading practice questions. Ask each other
programming questions, alternating weeks. Spend 10 or 15 minutes
working on the problem, and 10 or 15 minutes discussing it (finished
or not.)

12. When you hear any interview coding question that you haven't solved
yourself, go back to your desk and mail the question to yourself as a
reminder. Solve it sometime that week, using your favorite
programming language.

What 1 like about Steve's list is that it's somewhat holistic. When some
developers think "practice" they can't get beyond code puzzles. But to me,
programming is)eo , so there's a limit to how much
you can grow from solving every obscure programming coding interview
problem on the planet.

I also like Peter Norvig's general recommendations for effortful study
outlined in

1. Talk to other programmers. Read other programs. This is more
important than any book or training course.

2. Program! The best kind of learning is learning by doing.
3. Take programming classes at the college or graduate level.

4. Seek out and work on projects with teams of programmers. Find out
what it means to be the best programmer on a project—and the worst.

5. Work on projects after other programmers. Learn how to maintain code
you didn't write. Learn how to write code so other people can
effectively maintain it.

6. Learn different programming languages. Pick languages that have
alternate worldviews and programming models unlike what you're used

to.

7. Understand how the hardware affects what you do. Know how long it
takes your computer to execute an instruction, fetch a word from
memory (with and without a cache miss), transfer data over ethernet
(or the internet), read consecutive words from disk, and seek to a new
location on disk.

You can also glean some further inspiration from
, or maybe you'd like to 0 in your area.

I don't have a long list of effortful study advice like Steve and Peter and
Dave do. I'm far too impatient for that. In fact, there are only two
movements in my book of code kata:

1. Write a blog. I started this blog in early 2004 as a form of effortful
study. From those humble beginnings it has turned into the most
significant thing I've ever done in my professional life. So

s, too. The people who can write and communicate
effectively are, all too often, the only people who get heard. They get
to set the terms of the debate.

2. Actively participate in a notable open source project or three. All
the fancy blah blah blah talk is great, but are you ?
This is critically important, because ud -

. Try to leave a trail of public, concrete, useful

things in your wake that you can point to and say: I helped build that.

When you can write brilliant code and brilliant prose explaining that code to
the world—well, I figure that's the ultimate code kata.

QOceanofPDF.com

In Programming, One Is the Loneliest
Number

Is software development an activity preferred by anti-social,
misanthropic individuals who'd rather deal with computers than other
people? If so, does it then follow that all software projects are best
performed by a single person, working alone?

The answer to the first question may be a reluctant yes, but the answer to
the second question is a resounding and definitive no. I was struck by this
which explains the dangers of programming

alone:

“Some folks have claimed that [working alone] presents a great opportunity
to establish your own process. In my experience, there is no process in a
team of one. There's nothing in place to hold off the torrents of work that
come your way. There's no one to correct you when the urge to gold-plate
the code comes along. There's no one to review your code. There's no one
to ensure that your code is checked in on time, labeled properly, unit tested
regularly. There's no one to ensure that you're following a coding standard.
There's no one to monitor your timeliness on defect correction. There's no
one to verify that you're not just marking defects as "not reproducible"
when, in fact, they are. There's no one to double-check your estimates, and
call you on it when you're just yanking something out of your ass.

“There's no one to pick up the slack when you're sick, or away on a
business trip. There's no one to help out when youre overworked,
sidetracked with phone calls, pointless meetings, and menial tasks that
someone springs on you at the last minute and absolutely must be done
right now. There's no one to bounce ideas off of, no one to help you figure
your way out of a bind, no one to collaborate with on designs, architectures
or technologies. You're working in a vacuum. And in a vacuum, no one can
hear you scream.

“If anyone's reading this, let this be a lesson to you. Think hard before you
accept a job as the sole developer at a company. It's a whole new kind of
hell. If given the chance, take the job working with other developers, where
you can at least work with others who can mentor you and help you develop
your skill set, and keep you abreast of current technology.”

Working alone is a temptation for many desperate software developers who
feel trapped, surrounded by incompetence and mismanagement in the desert
of the real. Working alone means complete control over a software project,
wielding ultimate power over every decision. But working on a software
project all by yourself, instead of being empowering, is paradoxically
debilitating. It's a shifting mirage that offers the tantalizing promise of
relief, while somehow leaving you thirstier and weaker than you started.

Like many programmers, I was drawn to computers as a child because I
was an introvert. The world of computers—that calm, rational oasis of ones
and zeros—seemed so much more inviting than the irrational,
unexplainable world of people and social interactions with no clear right
and wrong. Computers weren't better than people, exactly, but they were
sure one heck of a lot easier to understand.

Computing in the early, pre-internet era was the very definition of a solitary
activity. Dani Berry, the author of M.U.L.E.,
quote:"No one ever said on their deathbed, 'Gee, I wish I had spent more
time alone with my computer.” But we've long since left the days of
solitary 8-bit programming behind. The internet, and the increasing scope
and complexity of software, have made sure of that. I can barely program
these days ; 1 feel crippled when I'm
not networked into the vast hive mind of programming knowledge on the
internet.

What good are nifty coding tricks if you can't show them off to anyone?
How can you possibly learn the craft without being exposed to other
programmers with different ideas, different approaches, and different
skillsets? Who will review your code and tell you when there's an easier
approach you didn't see? If you're serious about programming, you
should demand to work with your peers.

There's only so far you can go in this field by yourself. Seek out other smart
programmers. Work with them. Endeavor to be

, and you'll quickly discover that software development is a far more
soc1a1 activity than most people realize. There's a lot you can learn from
your fellow introverts.

OceanofPDEF.com

Wheo’s Your Coding Buddy?

I am continually amazed how much better my code becomes after I've had a
peer look at it. I don't mean a formal review in a meeting room, or making
my code open to anonymous public scrutiny on the internet, or some kind of
onerous regime. Just one brief attempt at explaining

and showing my code to a fellow programmer—that's usually all it takes.

This is, of course, nothing new. Karl Wiegers' excellent book “
” has been the definitive guide since 2002.

.-‘_‘;.-;,;4-,‘ 1 Peer
" . Reviews
. in Software

p

A Practical Guide

Karl E. Wiegers

I don't think anyone disputes the value of having_another pair of eyes on
vour code, but there's a sort of institutional inertia that prevents it from
happening in a lot of shops. In the chapter titled “A Little Help from Your
Eriends," Karl explains:

“Busy practitioners are sometimes reluctant to spend time examining a
colleague's work. You might be leery of a coworker who asks you to review
his code. Does he lack confidence? Does he want you to do his thinking for

him? ‘Anyone who needs his code reviewed shouldn't be getting paid as a
software developer,’ scoff some review resisters.

“In a healthy software engineering culture, team members engage their peers
to improve the quality of their work and increase their productivity. They
understand that the time they spend looking at a colleague's work product is
repaid when other team members examine their own deliverables. The best
software engineers I have known actively sought out reviewers. Indeed, the
input from many reviewers over their careers was part of what made these
developers the best.”

In addition to the above chapter, you can sample Cha , courtesy of the
author's own website. This isn't just feel-good hand waving.
There's actual data behind it. Multiple studies show

“The average defect detection rate is only 25 percent for unit testing, 35
percent for function testing, and 45 percent for integration testing. In
contrast, the average effectiveness of design and code inspections are 55 and
60 percent.”

So why aren't you doing code reviews? Maybe it's because you haven't
picked out a coding buddy yet!

Remember those school trips, where everyone was admonished to pick a
buddy and stick with them? This was as much to keep everyone out of
trouble as safe. Well, the same rule applies when you're building software.
Before you check code in, give it a quick once-over with your buddy. Can
you explain it? Does it make sense? Is there anything you forgot?

I am now required by law to link to

OF Code Quaciry: WTFs/minuTe

Ip?'-u
wTE g R
Wi F LI
I A, 4
— =
b= \ T}
—I[1| o«

Code W cocle el s

-] 41

J -

- e

GC‘.IOCJ\ E,Gol\f__. BAd coole .

Thank you, I'll be here all week.

(c) 2008 Focus Shift

But seriously, this cartoon illustrates exactly the kind of broad reality check
we're looking for. It doesn't have to be complicated to be effective.
WTFs/minute is a perfectly acceptable unit of measurement to use with your
coding buddy. The XP community has promoted pair programming for
years, but I think the buddy system is a far more practical way to achieve the
same results.

Besides, who wouldn't want to be half of an awesome part-time coding
dynamic duo?

That's way more exciting than the prospect of being shackled to the same
computer with another person. Think about all the other classic dynamic
duos out there:

Batman and Robin

e Lennon and McCartney
e Mario and Luigi

e Starsky and Hutch

e Siegfried and Roy

e Abbott and Costello

¢ Jobs and Wozniak

e Bert and Ernie

e Hall and Oates
¢ Cheech and Chong

Individuals can do great things, but two highly motivated peers can
accomplish even more when they work together. Surely there's at least one
programmer you work with who you admire or at least respect enough to
adopt the buddy system with. (And if not, you might consider chan

company..)

One of the great joys of programming is . So who's
your coding buddy?

OceanofPDF.com

Software Apprenticeship

In ;
Rob Walling makes a compelling argument for abandoning traditional
training classes in favor of apprenticeships:

[Why not] use the time-tested approach of trades that have been doing it for
years? Let's take an electrical apprenticeship as an example: in the United
States today, the International Brotherhood of Electrical Workers (I.B.E.W.)
trains thousands of electricians every year. They learn through two distinct
experiences:

1. Attending night school during the week to learn the theory of
electricity.

2. Working days on a construction site where they're able to gain
experience applying the theory to the hands-on construction of a
building

His first day on the job an apprentice is paired up with a journeyman (an
experienced electrician), who shows him the ropes. The journeyman
typically talks the apprentice through a task, demonstrates the task, has the
apprentice perform the task, then gives feedback. Listen, watch, do, review.

“With software it looks like this: the mentor evaluates the task at hand, be it
writing data access code or building a web-based user interface, and holds a
white-board discussion with the apprentice (listen). Next, the mentor might
write sample code demonstrating a particularly difficult or confusing
concept (watch). At this point the mentor sends the mentee off to gain their
own experience writing code (do). And finally, the mentor should review
the code, providing positive and negative feedback and suggesting
improvements (review). Listen, watch, do, review.

“[..] the key to any type of apprenticeship is the ‘do’ step. Most software
training gives you the listen and watch, but the ‘do and review’ is what
inspires growth and advances skills. The beauty of apprenticeship is that it
tackles theory and experience in one fell swoop. And it's easier than you
think.”

Instead of a , maybe we should be cultivating
apprentice/journeyman/master relationships in software development.

The mixture of theory by night and real world coding by day is
particularly compelling. Maybe this is why I've seen so many talented
interns turn into amazing developers—they're working on real business
code while getting the computer science courseware theory, too.

Being a good mentor isn't easy, though. I have difficulty mentoring
developers who are too far apart from me in skill level. I'm too impatient. If
you're putting football players together on a field to scrimmage, don't mix
professional players with high school players. The skill disparity is too
great for them to actually play football together. And how can they learn
without playing the game? Now, if you throw some college football players
in the mix, it's on!

Become a Hyperink reader. Get a s

Like the book? Support our author and leave a !

OceanofPDEFE.com

I11.

Web Design Principles

OceanofPDFE.com

Judging Websites

I was invited to judge the last year but was too busy to
participate. When they extended the offer again this year, I happily accepted.

“The is a distributed programming competition where teams
of one to four people, from all over the world, have 48 hours to build an
innovative web application, with Ruby on Rails or another Rack-based Ruby
web framework. After the 48 hours are up, a panel of expert judges will pick
the top ten winners.”

I received an email notifying me that judging begins today, so I cracked my
knuckles, sat down in front of my three monitors (all the better to judge
with!) and ... saw that there were around 340 entries.

by weLaika

by dtime + shaine

Winlooime 1o Socisl i

by Chazinho

by Prograils

That's when I started to get a little freaked out about the math. Perhaps we
can throw five percent of the entrants out as obviously incomplete or
unfinished. That leaves 323 entries to judge. Personally, I'm not comfortable
saying I judged a competition unless I actually look at each one of the

entries, so at an absolute minimum I have to click through to each webapp.
Once I do, I couldn't imagine properly evaluating the webapp without
spending at least 30 seconds looking at the homepage.

Let's be generous and say I need 10 seconds to orient myself and account for
page load times, and 30 seconds to look at each entry. That totals three and
a half hours of my, y'’know, infinitely valuable time. In which I could be
finding a cure for cancer, or clicking on LOLcats. I still felt guilty about only
allocating half a minute per entry; is it fair to the contestants if I make my
decision based on 30 seconds of scanning their landing page and maybe a
few desultory clicks?

But then I had an epiphany: yes, deciding in 30 seconds is totally
completely unfair, but that's also exactly how it works in the real world.
Users are going to click through to your web site, look at it for maybe 30
seconds, and either decide that it's worthy, or reach for the almighty back
button on their browser and bug out. Thirty seconds might even be a bit
generous. In ,, users made up their mind about websites in
under a second.

“Researchers led by Dr. Gitte Lindgaard at Carleton University in Ontario
wanted to find out how fast people formed first impressions. They tested
users by flashing web pages for 500 millseconds and 50 milliseconds onto
the screen, and had participants rate the pages on various scales. The results
at both time intervals were consistent between participants, although the
longer display produced more consistent results. Yet, in as little as 50
milliseconds, participants formed judgments about images they glimpsed.
The ‘halo effect’ of that emotional first impression carries over to cognitive
judgments of a web site's other characteristics including usability and
credibility.”

The opportunity cost to switch websites is one tiny little click of the mouse
or tap of the finger. What I learned from judging the Rails Rumble most of
all is that your website's front page needs to be kind of awesome. It is
never the complete story, of course, but do not squander your first
opportunity to make an impression on a visitor. It may be the only one you
get.

I'm not sure I was learning much about these apps while I judged, and for
that I am truly sorry. But along the way I accidentally learned a heck of a lot

about what makes a great front page for a web application. So I'd like to
share that with you, and all future Rails Rumble entrants:

1.Load reasonably fast. I've talked about
before; the sooner the front page of your site loads, the sooner I

can decide whether or not I am interested. If you are slow, I will resent
you for being slow, and the slower you are the more I will resent you
for keeping me from not just finding out about you but also keeping me
from moving on to the next thing. I need to be an
That means moving quickly. Above all else,load fast.

2. What the %#!@" is this thing? The first challenge you have is not
coding your app. It is explaining what problem your app solves, and
why anyone in the world would possibly care about that. You need an

on your front page: can you explain to a complete

stranger, in 30 seconds, why your application exists? Yes, writing
succinctly and clearly is an art, but keep pounding on that copy, keep
explaining it over and over and over until you have your explanation
polished to the fine sheen of a diamond. When you're confident you

could walk up to any random person on the street, strike up a

conversation about what you're working on, and not have their eyes

gloss over in boredom and/or fear—that's when you're ready. That's the
text you want on your home page.

3. Show me an example. Okay, so you're building the ultimate tool for
cataloging and sharing Beanie Babies on Facebook. Awesome, let me
be an angel investor in your project so I can get me a piece of those
sweet, sweet future billions. The idea is sound. But everyone knows
that . I have no clue
what the execution of your idea is unless you show it to me. At the very
least throw up some screenshots of what it would look like if T used
your webapp, with some juicy real world examples. And please, please,
please, for the love of God please, do not make me sign up, click
through a video, watch a slideshow, or any of that nonsense. Only
emperors and princes have that kind of time, man.

4. Give me a clear, barrier-free call to action. In the rare cases where
the app passes the above three tests with flying colors, I'm invested: I
am now willing to spend even more of my time checking it out. What

do I do next? Where do I go? Your job is to make this easy for me. I
call this "the put a big-ass giant obvious fluorescent lime green button
on your home page" rule. You can have more than one, but I'd draw the
line at two. And make the text on the button descriptive, like Start
sharing your favorite Beanie Babies — or Build your dream furry
costume —. If you require login at this point, I strongly urge you to
skip that barrier and have a live sample I can view without logging in at
all, just to get a taste of how things might work. If you're really,
really slick you will make it seamless to go from an unregistered to a
registered state without losing anything I've done.

. Embrace your audience, even if it means excluding other audiences.
Even if you nail all the above, you might not fit into my interest zone
through absolutely no fault of your own. If you built the world's most
innovative and utterly disruptive Web 5.0 Pokédex, there's a lot of
people who won't care one iota about it, because they're

. This is not your fault and it is certainly not their fault. You
need to embrace the idea that half of all success is knowing your core
audience and not trying to water it down so much that it appeals to
"everyone." Don't patronize me by trying to sell me on the idea that
everyone should care about babies, or invoicing, or sports, or being a
student, or whatever. Only the people who need to care will care, and
that's who you are talking to. So have the confidence to act like it.

I realize that Rails Rumble apps only have a mere 48 hours to build an entire
app from scratch. I am not expecting a super professional amazing home
page on every one of the entries, nor did I judge it that way. But I do know
that a basic sketch of a homepage design is the first thing you should
work on in any webapp, because it serves as the essential starting design
document and vision statement. Unless you start with a basic homepage
that meets the above five rules, your app won't survive most judges, much
less the running wild on the Internet.

OceanofPDE.com

In Pursuit of Simplicity

John Maeda created quite a stir with his montage of the Yahoo and Google
homepages from 1996 to 2006 in

1000 {000 000 2001 2002 2003

1996 1997 2004 2005

Although Philipp Lenssen has posted on this topic before (he calls it the
slague), it's still striking. Altavista made , and they
didn't survive.

There's an interesting anecdote about Google's absolute focus on
minimalism in Seth Godin's book Pur :

“It turns out that the folks at Google are obsessed with the email they get
criticizing the service. They take it very seriously. One person writes in
every once and a while and he never signs his name. According to Marissa
Meyer at Google, ‘Every time he writes, the e-mail contains only a two-
digit number. It took us a while to figure out what he was doing. He's
counting the number of words on the home page. When the number goes
up, he gets irritated, and e-mails us the new word count. As crazy as it
sounds, his emails are helpful, because they put an interesting discipline on
the Ul team not to introduce too many links. It's like a scale that tells you
that you've gained two pounds.’”

And of course, is famous for their mantra of

“Conventional wisdom says to beat your competitors you need to one-up
them. If they have 4 features, you need 5. Or 15. Or 25. If they're spending
X, you need to spend XX. If they have 20, you need 30.

“While this strategy may still work for some, it's expensive, resource
intensive, difficult, defensive, and not very satisfying. And I don't think it's
good for customers either. It's a very Cold War mentality—always trying to
one-up. When everyone tries to one-up, we all end up with too much.
There's already too much ‘more’—what we need are simple solutions to
simple, common problems, not huger solutions to huger problems.

“What I'd like to suggest is a different approach. Instead of one-upping, try
one-downing. Instead of outdoing, try underdoing. Do less than your
competitors to beat them.”

Usability guru Donald Norman thinks the comparison between Google and
Yahoo is misleading, and offers

“Is Google simple? No. Google is deceptive. It hides all the complexity by
simply showing one search box on the main page. The main difference, is
that if you want to do anything else, the other search engines let you do it
from their home pages, whereas Google makes you search through other,
much more complex pages. Why aren't many of these just linked together?
Why isn't Google a unified application? Why are there so many odd,
apparently free-standing services?”

I think this is a completely wrongheaded analysis, because I don't want to
do anything else. All I want is to find what I'm searching for. Like Damien
Katz, I believe :

“These people don't care about your flexible, brilliant architecture. They
don't wish to tweak settings. They don't want to spend more than 10
consecutive seconds confused. They just want simple, they want to get their
task done and move on. They don't want to spend time learning anything
because they know they'll probably just forget it long before they'll need to
do it again anyway.”

We should always be in pursuit of simplicity, in whatever form it takes.

OceanofPDEF.com

Will Apps Kill Websites?

I've been an eBay user since 1999, and I still frequent eBay as both buyer
and seller. In that time, eBay has transformed from a place where geeks sell
, into a global marketplace where
businesses sell anything and everything to customers. If you're looking for
strange or obscure items, things almost nobody sells new any more, or grey
market items for cheap, eBay is still not a bad place to look.

At least for me, eBay still basically works, after all these years. But one
thing hasn't changed: the eBay website has always been difficult to use
and navigate. They've updated the website recently to remove some of the
more egregious cruft, but it's still way too complicated. I guess I had kind of
accepted old, complex websites as the status quo, because I didn't realize
how bad it had gotten until I compared the experience on the eBay website
with the experience of the eBay apps for mobile and tablet.

eBay Website

I Y* Ga Wyoay | Sull | Communiy | Cusiomer Support | OV Cart

CATEGORIS =~ ELECTROMICS FhSHIH RLTORS TICHETS DEALS CLASSIFIERS

pee wae herman ol All Cataeparie ﬂ [E—

| Inchids dusirptinn

70 condlss foand for pee wee herman doll B Save search | Tes us e vou Thim?

* Categuries Mijlsms Awchons anip By - ew Duts Clboray s
Toys & Hobbéss (w1 e :'!"'_‘: W At | Bas bl I Pags 1 of 2 V]

TV, Mowe & Characsr Tops (=2

WwRage & Aniious Toys 14 Tu.ys” US§ Hottoys uydimcionetaye

Atlion Feguies i
Moceis & Kits 12 Talking Pee-Wee Herman Dall 1 mis §7.50 ah 45w
Classic Teys [1 Ritii Wil Aseapsad
Dolls & Gears (5|
Dolia (51
Sew all categorias
* Condition 1587 sealed NRFE mint 187 Pee |) Tos-und Buy 1L Muw $64.75 20d 2h Jam
—— Wag Herman Talling Doll works % ™
* = great_groat box 15
A, Risteren: Acvesie within 14 says
Mot Speafied |7)
Chome moms
- Pri FEE-WEE HERMAN DOLL J Toammd Wy L1 Mo §3.05 Td 200 48w
PRECAWNED HAS WEAR 1T 34 I8 "
¥ F] - IHCH 1967 MATCHBOX TOYE
READI
w Saller Rt Accasind withn T dive
#Bay Top-rated sallars
Soecly selerg %47 Pas-Woe Herman Puil 7 Ridn §70.43 Bk
Stiing Takang Doll - 17 Tak
~ Buying f " Retarra: Accegind wiihin 7 diys
Audion
Buy 1 Blpw
Noege mone
™ Shaw only VINTAGE PEE \WWEE HERMAN) topem=s Bimy 1k Now M09 1% 21h Gin
Camgileled lsbings PULL STRING DL 1947 "
Chicwm more MATZHEION C426
Dne-giy’ sHppeng available
* Location Rwteroa: deirecied within 14 days
LES: Cnlp
Maith knenca Pee Wee Herman 13 .inch talking o Bty §19.00 8h 5l
Winirkchd s dadll Fras

eBay Mobile App

¥y wh) g B £ == =
] 2 d= i i s e == g g L e,
A e TR AT N e L e R e BH e e BER R HLRRAYEEE @

$7.50

Talking Pee-Wea
+ £5.,99
Hemuan Dol 3 bids
dh3Z2m
1987 sealed NRFB $84.75
mint 18" F'EE_WE-E + 81750
Herman Talking Buy It Now
Doll, works great,great P
1987 Pea-Wee $20.49
Herman Pull String +$10.40
Talking Doll - 17" Tall 2 bids
hd43m

$19.00
Pea Wee Herman 18 B

Search

eBay Tablet App

All Categarios

Talking Pege-Wea Horman Doll

1 hids

Pae Wee Herman 18 inch talking doll

£19.00

SHIPPING

@ bids

Bh 26m FREE

VINTAGE PEE WEE HERMAM TALKING
DOLL 1987 MATCHBOX

[N

70 Search Results

All Listings

1987 sealed NAFB mini 18" Pege Wee

Herman Talking Doll.works great,great...
Buy It Now $64.75
27d-2h

pee-wes herman pull siring doll 1983 in
unopened box still talks

575.00

+ 317,85

0 bdds
1d Th

RARE 1887 14" Matchbox Pee Wea
Herman Chairy Hand Puppet w/ 18" Pe...

[CFT R

O pee wee harman ...

Sort by Best Match

Reafing

1987 Pee-Wee Herman Pull 3”"‘9
Talking Doll - 17" Tall

2 bicts
Th 35m

$20.49

+ 510,40

PEE-WEE HERMAN DOLL PREOWMED
HAS WEAR 17 3/ INCH 1887 MATCHB. ..

58.99
¢ SH.83

Buy It Mo
1d 20h

Pee Wee Herman Doll 17 inch

LR

Unless you're some kind of super advanced eBay user, you should probably
avoid the website. The tablet and mobile eBay apps are just plain simpler,

easier, and faster to use than the eBay website itself. I know this intuitively
from using eBay on my devices and computers, but there's also

with data to prove it, too. To be fair, eBay is struggling under the
massive accumulated design debt of a website originally conceived in the
late 90s, whereas their mobile and tablet app experiences are recent
inventions. It's not so much that the eBay apps are great, but that the
eBay website is so very,very bad.

The implied lesson here is to embrace constraints. Having a limited, fixed
palette of UI controls and screen space is a strength. A strength we used to
have in early Mac and Windows apps, but seem to have lost somewhere
along the way as applications got more powerful and complicated. And it's
endemic on the web as well, where the eBay website has been slowly
accreting more and more functionality since 1999. The nearly unlimited
freedom that you get in a modern web browser to build whatever Ul you can
dream up, and assume as large or as small a page as you like, often ends up
being harmful to users. It certainly is in the case of eBay.

If you're starting from scratch, you should always , but
now that we have such great mobile and tablet device options, consider
designing your site for the devices that have the strictest constraints first,
too. This is the thinking that led to . It helps you
stay focused on a simple and uncluttered UI that you can scale up to bigger
and beefier devices. Maybe eBay is just going in the wrong direction here;
design simple things that scale up; not complicated things you need to
scale down.

/! But why stop there? If building the mobile and
tablet apps first for a web property produces a better user experience—why
do we need the website, again? Do great tablet and phone applications make
websites obsolete?

Why are apps better than websites?

1. They can be faster. No browser overhead of CSS and HTML and
JavaScript hacks, just pure native Ul elements retrieving precisely the
data they need to display what the user requests.

2. They use simple, native UI controls. Rather than imagineering
whatever Ul designers and programmers can dream up, why not pick
from a well understood palette of built-in UI controls on that tablet or
phone, all built for optimal utility and affordance on that particular
device?

3. They make better use of screen space. Because designers have to fit
just the important things on four inch diagonal mobile screens, or 10
inch diagonal tablet screens, they're less likely to fill the display up with
a bunch of irrelevant noise or design flourishes (or, uh, advertisements).
Just the important stuff, thanks!

4. They work better on the go and even offline. In a mobile world, you
can't assume that the user has a super fast, totally reliable Internet
connection. So you learn to design apps that download just the data
they need at the time they need to display it, and have sane strategies
for loading partial content and images as they arrive. That's assuming
they arrive at all. You probably also build in some sort of offline mode,
too, when you're on the go and you don't have connectivity.

Why are websites better than apps?

1. They work on any device with a browser. Websites are as close to
universal as we may ever get in the world of software. Provided you
have a HTML5 compliant browser, you can run an entire universe of
"apps" on your device from day zero, just by visiting a link, exactly the
same way everyone has on the Internet since 1995. You don't have to
hope and pray a development community emerges and is willing to
build whatever app your users need.

2. They don't have to be installed. Applications, unlike websites, can't
be visited. They aren't indexed by Google. Nor do applications
magically appear on your device; they must be explicitly installed.
Even if installation is a one-click affair, your users will have to discover
the app before they can even begin to install it. And once installed,
they'll have to

3. They don't have to be updated. Websites are always on the
. But once you have an application installed on your device, how

do you update it to add features or fix bugs? How do users even know if
your app is out of date or needs updating? And why should they need to
care in the first place?

4. They offer a common experience. If your app and the website behave
radically differently, you're forcing users to learn two different
interfaces. How many different devices and apps do you plan to build,
and how consistent will they be? You now have a community divided
among many different experiences, fragmenting your user base. But
with a website that has a decent mobile experience baked in, you can
deliver a consistent, and hopefully consistently great, experience across
all devices to all your users.

I don't think there's a clear winner, only pros and cons. But apps will always
need websites, if for nothing else other than a source of data, as a
mothership to phone home to, and a place to host the application downloads
for various devices.

And if you're obliged to build a website, why not build it out so it offers a
reasonable experience on a mobile or tablet web browser, too? I have
nothing against a premium experience optimized to a particular device, but
shouldn't all your users have a premium experience? eBay's problem here
isn't mobile or tablets per se, but that they've let their core web experience
atrophy so badly. I understand that there's a lot of inertia around legacy eBay
tools and long time users, so it's easy for me to propose radical changes to
the website here on the outside. Maybe the only way eBay can redesign at
all is on new platforms.

Will mobile and tablet apps kill websites? A few, certainly. But only the
websites stupid enough to let them.

OceanofPDE.com

Doing It Like Everybody Else

; called me out in a comment yesterday for

“Web forms have become a convention, and users have been trained for 10
years on how to fill out forms. Users would get confused, and some would
bail out (abandon carts, etc.). Web forms work, and we know how to use
them. Your form example violates the > principle on
many levels.”

In a sense, he's right. When it comes to coding, as ,
always favor consistency over cleverness:

“The class isn't the main point of this post, however. Rather, it is some
advice that Peter gave a few times during the class. Someone might ask a
question like ‘Can't I do x in some funky way?’ and he would answer, “You
could, but no one would expect to see it so don't.” The point he was making
is that we, as programmers, should stay away from being clever. We should,
as much as possible, try to do things the same way everyone else does
them. Why? Because you won't be the only person to work on this code.
Even if you are, the next time you touch it might be a year or two from now.
If you did something clever, the next person to touch it will look at the code
and not immediately understand. This will have one of two consequences.
Either they will have to spend 10 minutes just trying to understand what it
is you did or, worse, they will assume you made a mistake and ‘fix’ it by
making it less clever. Neither of these results is desirable. Unless you are
writing one-off code for yourself you need to write it in a manner to make it
easily understandable so that it can be easily maintained.”

It's clearly a bad idea to write code with a "how 'bout we try it this way"
mentality, as :

"A client has asked me to build and install a custom shelving system. I'm at
the point where I need to nail it, but I'm not sure what to use to pound the
nails in. Should I use an old shoe or a glass bottle?"

a) It depends. If you are looking to pound a small (20 pound) nail in
something like drywall, you'll find it much easier to use the bottle,
especially if the shoe is dirty. However, if you are trying to drive a heavy
nail into some wood, go with the shoe: the bottle with shatter in your hand.

b) There is something fundamentally wrong with the way you are building;
you need to use real tools. Yes, it may involve a trip to the toolbox (or even
to the hardware store), but doing it the right way is going to save a lot of
time, money, and aggravation through the lifecycle of your product. You
need to stop building things for money until you understand the basics of
construction.”

However, when it comes to issues of user interface, consistency isn't
always a virtue. User interfaces should be internally consistent, but not
necessarily consistent with every other application in the rest of the
world. That said, some Ul elements become so ingrained into popular
culture that they should be followed for consistency's sake. Some good
examples are:

e A search box in the upper-right hand corner
e A logo in the upper-left hand corner that takes you back home

e The "forward" and "back" buttons

But not all user interface conventions are created equal. Some are timeless.
Some are there by default, because nobody bothered to sufficiently question
them. Some grow old and outlive their usefulness. How do we
discriminate between conventions that actually help us and those that
are merely... expected?

The answer, of course, is to try multiple approaches and collect usage data
to determine what works and what doesn't. This is (relatively) easy for web
apps, which is why , and le are all notorious for doing
it. They'll serve up experimental features to a tiny fraction of the user base,
collect data on how those features are used, then feed that back into their
decision making process.

If we built Ul with an iron-clad guarantee that we would "do it like
everyone else," would we have ever experienced the ultra simple Mom-

friendly ? Or Windows Media Center's amazing, utterly un-
Windows-like ten foot UI? Would Office 12 be using the

instead of traditional toolbars and menus? Heck, would we have ever
made the transition from character mode to GUIs?

I think UI experimentation is not only desirable, but necessary. If we
don't experiment, we can't evolve Ul forward. However, you have to do it
the right way:

1. Have a complete understanding of the current convention and how it
arose

2. Have a good, reasoned argument for deviating from the convention
3. Collect usage data on your experiments
4. Make decisions based on the usage data

If you're not collecting usage data, or your reason is "it looks better this

way," then you're doing it wrong, and you should stick with the
conventions.

OceanofPDEFE.com

The One-Button Mystique

I enjoy_my_iPhone, but I can't quite come to terms with one aspect of its
design: Apple's insistence that there can be only ever be one, and only one,
button on the front of the device.

I also own a completely button-less Kindle Fire, and you'll get no argument
from me that there should be at least one obvious _Jesus Handle" button
on the front of any gadget. I do wonder why Amazon decided to make the
Fire buttonless, when every other Kindle they ship has a home button.
Amazon has a track record of making some awfully rough version 1.0
devices; I'm sure they'll add a home button in a version or two. And, hey, at
only $199, I'm willing to cut them a little slack. For now.

Even Apple is no stranger to buttonless devices. Consider the oddly
buttonless third generation iPod Shuffle, where you had to double and even
triple click the controls on the headphones to do basic things like advance
tracks. Oh, and by the way, this also made every set of headphones you own
obsolete, at least for use with this model. The fourth gen shuffle rapidly
switched back to physical controls on the device, and the fifth gen went to
touch controls on the device, as expected.

Microsoft is just as guilty. I sometimes struggle with the otherwise
awesome Xbox 360 Wireless Microphone. It has only a power button and
some lights.

Indicator lights

Power/fconnect button

In its defense, for the most part it does just work when you pick it up and
start singing (badly, in my case), but I admit to being slightly perplexed
every time I have to sync it with an Xbox, or figure out what's going on
with it. Can you blame me?

When you turn on the microphone, the built-in lights shine to display the
microphone status as follows:

e Power on: lights flash green one time every second
e Connecting: lights flash green four times every second

e Connection complete: lights flash blue, and then stops

When your battery power is low, the built-in lights shine to display the
battery charge status as follows:

e Low: Lights flash amber one time every three seconds

e Critical: Lights flash amber one time every second

When your microphone moves out of the wireless range of your console, the
lights flash green one time every second. The lights can also change color
together with supported game titles.

If we can agree that no buttons is clearly a bad idea, I think it follows that
one button is problematic in its own way. I have the same issue with the
single button on the iPhone that —it may
be OK-ish at the very beginning, but over time it leads to absurd, almost
comical overloading of functionality. Consider how many different things
the single button on the face of an iPhone now controls:

(diagram courtesy ,)

The iPhone home button? Why, it's easy! You have your choice of...

single-click
double-click
triple-click
click and hold

click and pause and click again

All of which have different meanings at different times, of course. In
particular I spend a lot of time double-clicking to get to the active apps list,

and I often mis-tap which kicks me over to the home screen. I have so many
apps installed on my iPhone that search is the only rational way to navigate.
This means I search a lot, which requires clicking once to get to the default
home page, pausing, then clicking again. Sometimes I click too long, which
is then detected as click-and-hold, and I get the voice search app which I
am... er, , to put it mildly.

['ve gotten to the point where I dread using the home button on my iPhone
because it . And I get it wrong a significant percentage of
the time. This isn't the way it's supposed to be.

You might be expecting me to turn into a rabid Windows Phone or Android
fanboy about now and snarkily note how they get it right. I'm not sure they
do. Either of them.

When there's one button on the device, at least it's clear what that button is
supposed to do, right? Well,

There is one theme I agree with here—the clearly marked back button on
both Android and Windows phones, just like a web browser. I mostly
use my iPhone as a platform for the Internet, and the simplicity of the
Internet is its primary strength: a collection of obvious things to click, and
an easy, giant honking back button so you never get lost in its maze of
twisty passages, all alike. It is true that browsers have a home button, but
the latest versions of Chrome, Firefox, and Internet Explorer have all but
pushed that home button off the UI in favor of the ginormous back button.
While I'll tentatively agree that not all phone apps have to behave like the
Internet, the Internet is becoming more and more of 2
ap every day. The back button is a UI paradigm that works like
gangbusters for webapps, and I'd argue strongly in favor of that being a
hard button on a device.

But once you add three buttons, thinking starts to creep in again. Am I
pressing the correct button? That's never good. And I don't even know what
that third button is supposed to be on the Android phone! I could possibly
be in favor of the hard search button on the Windows phone, I suppose, but
I'd rather see good, consistent use of two buttons on the face of a device

before . I think there's a reason the
industry has more or less standardized on a two-button mouse, for example.
(Yes, there is , but it's a nice to have, not an

essential part of the experience.)

What about the one finger solution? Even with touch devices, one finger
does not seem to be enough; there's a
over time.

“On the iPad, there are a number of system-wide gestures, such as swiping
left or right with four fingers to switch between apps. Four-finger swipes?
That's convoluted, but imagine a virtual mixing console with horizontal
sliders. Quickly move four of them at once...and you switch apps.
Application designers have to work around these, making sure that
legitimate input methods don't mimic the system-level gestures.

“The worst offender is this: swipe down from the top of the screen to reveal
the Notification Center (a window containing calendar appointments, the
weather, etc.). A single-finger vertical motion is hardly unusual, and many
apps expect such input. The games Flight Control and Fruit Ninja are two
prime examples. Unintentionally pulling down the Notification Center
during normal gameplay is common. A centered vertical swipe is natural in
any paint program, too. Do app designers need build around allowing such
controls? Apparently, yes.”

Yes, our old friend overloading is now on the touch scene in spades: for all
but the simplest use of a tablet, you will inevitably find yourself double-
tapping, tapping and holding, swiping with two fingers, and so on.

Apple's done a great job of embodying simplicity and clean design, but I
often think they go too far, particularly at the beginning. For example, the
first Mac s. Everything's a design call, and
somewhat subjective, but like Goldilocks, I'm going to maintain that the
secret sauce here is not to get the porridge too cold (no buttons) or too hot

(3 or more buttons), but just right. I'd certainly be a happier iPhone user if 1
didn't have to think so much about what's going to happen when I press my
home button for the hundredth time in a day.

OceanofPDE.com

Usability on the Cheap and Easy

Writing code? That's the easy part. Getting your application

, and creating applications that peo —now that's
the hard stuff.
I've been a long time fan of Krug's book . Not just

because it's a quick, easy read (and it is!)—but because it's the most concise
and most approachable book I've ever found to teach the fundamental
importance of usability. As far as I'm concerned, if you want to help us
make the software industry a saner place, the first step is getting Don't
in the hands of as many of your coworkers as you can. If
you don't have people that care about usability on your project, your
project is doomed.

Beyond getting people over the hurdle of at least paging through the Krug
book, and perhaps begrudgingly conceding that this usability stuff matters,
the next challenge is figuring out how to integrate usability testing into your
project. It's easy to say "Usability is Important!" but you have to walk the
walk, too. I touched on some low friction ways to get started in

. That rough outline is now available in handy, more
complete book form—*

»

Their Bowe-b8 SOmpanion to 1he Destssiing Don't Moke Me Think!
A Coirurson Sense Approsch io Web Lisstiily

Steve Krug

The Do-It-Yourself Guide to Fmdmg

-.;\
and Fixing Usability Problems

Don't worry, Krug's book is just as usable as his advice. It's yet another
quick, easy read. Take it from the man himself:

e Usability testing is one of the best things people can do to improve
Web sites (or almost anything they are creating that people have to
interact with).

e Since most organizations can afford to hire someone to do testing for
them on a regular basis, everyone should learn to do it themselves.
And ...

e [could probably write a pretty good book explaining how to do it.

If you're wondering what the beginner's "how do I boil water?" recipe for
software project usability is, stop reading this post and get a copy of
. Now.

One of the holy grails of usability testing is ¢ —measuring where
people's eyes look as they use software and web pages. Yes, there are clever
JavaScript tools that can measure where users move their pointers, but that's
only a small part of the story. Where the eye wanders, the pointer may not,

and vice-versa. But, who has the time and equipment necessary to conduct
an actual eyetracking study? Almost nobody.

That's where L yetracking Web Usability comes in.

Jakob Nielsen

Kara Pernice

Eyetracking
Web Usability

Eyetracking Web Usability is chock full of incredibly detailed eyetracking
data for dozens of websites. Even though you (probably) can't afford to do
real eyetracking, you can certainly use this book as a reference. There is
enough variety in Ul and data that you can map the results, observations,
and explanations found here to what your project is doing.

This particular book is rather eyetracking specific, but it's just the latest
entry in a_whole series on usability, and I recommend them all highly.
These books are a fount of worthwhile data for anyone who works on
software and cares about usability, from one of the most preeminent
usability experts on the web.

Usability isn't really cheap or easy. It's an endless war, with innumerable
battlegrounds, stretching all the way back to the dawn of computing. But
these books, at least, are cheap and easy in the sense that they give you

some basic training in fighting the good (usability) fight. That's the best I
can do, and it's all I'd ask from anyone else I work with.

OceanofPDE.com

The Opposite of Fitts’ Law

If you've ever wrangled a user interface, you've probably heard of Litis'
Law. It's pretty simple—the larger an item is, and the closer it is to your
cursor, the easier it is to click on. Kevin Hale put together a_

, so rather than over-explain it, I'll refer you there.

The short version of Fitts' law, to save you all that tedious reading, is this:

e Put commonly accessed Ul elements on the edges of the screen.
Because the cursor automatically stops at the edges, they will be easier
to click on.

e Make clickable areas as large as you can. Larger targets are easier to
click on.

I know, it's very simple, almost too simple, but humor me by following
along with some thought exercises. Imagine yourself trying to click on ...

a 1 x 1 target at a random location

a 5 x 5 target at a random location

a 50 x 50 target at a random location

a 5 x 5 target in the corner of your screen

a 1 x 100 target at the bottom of your screen

Fitts' Law is mostly common sense, and enjoys enough currency with Ul
designers that they're likely to know about it even if the
. Unfortunately, I've found that designers are
much less likely to consider the opposite of Fitts' Law, which is arguably
just as important.

If we should make UI elements we want users to click on large, and ideally
place them at corners or edges for maximum clickability—what should we

do with UI elements we don't want users to click on? Like, say, the
"delete all my work" button?

Alan Cooper, in About Face 3, calls this the ejector seat lever.

“In the cockpit of every jet fighter is a brightly painted lever that, when
pulled, fires a small rocket engine underneath the pilot's seat, blowing the
pilot, still in his seat, out of the aircraft to parachute safely to earth. Ejector
seat levers can only be used once, and their consequences are significant
and irreversible.

“Applications must have ejector seat levers so that users can occasionally
move persistent objects in the interface, or dramatically (sometimes
irreversibly) alter the function or behavior of the application. The one thing
that must never happen is accidental deployment of the ejector seat.”

r 3
Windshield FM Ejector Cabin
Washer Radio Seat Lights

s

“The interface design must assure that a user can never inadvertently fire
the ejector seat when all he wants to do is make some minor adjustment to
the program.”

I can think of a half-dozen applications I regularly use where the ejector
seat button is inexplicably placed right next to the cabin lights button.
Let's take a look at our old friend GMail, for example:

Send Save Now Dizcard

To: =jatwood@codinghorror coms,

Add Ce | Add Bee

Subject: i YOU ARE A TERRIBLE HUMAN BEINGIIIE)

AP Attarh a file B2 Add avent invitatinn

I can tell what you're thinking. Did he click Send or Save Now? Well, to
tell you the truth, in all the excitement of composing that angry email, I
kind of lost track myself. Good thing we can easily undo a sent mail! Oh
wait, we totally can't. Consider my seat, or at least that particular rash
email, ejected.

It's even worse when I'm archiving emails.

Archive Report spam | Delete Mow
Select: Al one, Read, Unread, Starr

[Geoff me, Willy (12)

While there were at least 10 pixels between the buttons in the previous
example, here there are all of... three. Every few days I accidentally click
Report Spam when I really meant to click Archive. Now, to Google's
credit, they do offer a simple, obvious undo path for these accidental clicks.
But I can't help wondering why it is, exactly, that these two buttons with
such radically different functionality just have to be right next to each other.

Undo is powerful stuff, but wouldn't it be better still if I wasn't pulling the
darn ejector seat lever all the time? Wouldn't it make more sense to put that
risky ejector seat lever in a different location, and make it smaller?
Consider the WordPress post editor.

Status: Published Edit
Visibility: Public Edit

Y] Published on: Mar 23, 2010 @ 22:09 Edit

Move to Trash Update

Here, the common Update operation is large and obviously a button—it's
easy to see and easy to click on. The less common Move to
Trash operation is smaller, presented as a vanilla hyperlink, and placed well
away from Update.

The next time you're constructing a user interface, you should absolutely
follow Fitts' law. It just makes sense. But don't forget to follow the opposite
of Fitts' law, too—uncommon or dangerous Ul items should be difficult to
click on!

OceanofPDE.com

Usability vs. Learnability

In this , Jakob Nielsen champions writing for the web in an
inverted pyramid style:

“Journalists have long adhered to the inverse approach: start the article by
telling the reader the conclusion (‘After long debate, the Assembly voted to
increase state taxes by 10 percent’), follow by the most important
supporting information, and end by giving the background. This style is
known as the inverted pyramid for the simple reason that it turns the
traditional pyramid style around. Inverted-pyramid writing is useful for
newspapers because readers can stop at any time and will still get the most
important parts of the article.

“On the Web, the inverted pyramid becomes even more important since we
know from several user studies that users don't scroll, so they will very
frequently be left to read only the top part of an article. Very interested
readers will scroll, and these few motivated souls will reach the foundation
of the pyramid and get the full story in all its gory detail.”

For some reason, the idea that "content should never appear below the fold
because users don't scroll" was a very widely held belief well into the
millennium. I don't know what user studies Mr. Neilsen is referring to; even
the ancient 1998 reference ” found
no evidence to support this claim:

“The Fidelity site, more than any other site we tested, went to great lengths
to have many of its pages completely above the fold. The result is lots of
pages, each with small amounts of content. There was no evidence to
suggest that this strategy helped or hurt.

“In fact, we never saw any user frustration with scrolling. For instance,
when we counted ‘first clicks’—the first place people clicked when they
came to a new site—clicks were just as likely to be above the fold as they
were to be below it. If scrolling below the fold was a source of frustration,
we would have expected to see some sort of negative correlation between
first clicks below the fold and success, but we didn't.”

In 2003, Jakob added an addendum to his Alertbox, which reads:

“In 1996, I said that ‘users don't scroll.” This was true at the time: many, if
not most, users only looked at the visible part of the page and rarely
scrolled below the fold. The evolution of the Web has changed this
conclusion. As users got more experience with scrolling pages, many of
them started scrolling.”

You should certainly try to put the most important information at the top of
whatever it is you're writing, be it a website, a program, an email, a resume,
etc. Believe me, I've learned this the hard way; you're lucky if they read
, much less the first paragraph.

But to claim that users don't scroll is downright ridiculous, even for 1996.
Let's say you had a user who didn't know how to scroll a web page. How
long would it take this user, however timid they may be, to learn that they
needed to scroll when browsing the web? A user who can't learn to scroll
within a few hours certainly won't be using the internet for very long.

In Joel Spolsky's excellent , he notes
the difference between Usability and Learnability:

“It takes several weeks to learn how to drive a car. For the first few hours
behind the wheel, the average teenager will swerve around like crazy. They
will pitch, weave, lurch, and sway. If the car has a stick shift they will stall
the engine in the middle of busy intersections in a truly terrifying fashion.

“If you did a usability test of cars, you would be forced to conclude that
they are simply unusable.

“This is a crucial distinction. When you sit somebody down in a typical
usability test, you're really testing how learnable your interface is, not how
usable it is. Learnability is important, but it's not everything. Learnable user
interfaces may be extremely cumbersome to experienced users. If you make
people walk through a fifteen-step wizard to print, people will be pleased
the first time, less pleased the second time, and downright ornery by the
fifth time they go through your rigamarole.

“Sometimes all you care about is learnability: for example, if you expect to
have only occasional users. An information kiosk at a tourist attraction is a

good example; almost everybody who uses your interface will use it exactly
once, so learnability is much more important than usability. But if you're
creating a word processor for professional writers, well, now usability is
more important.

“And that's why, when you press the brakes on your car, you don't get a
little dialog popping up that says ‘Stop now? (yes/no).’”

I was greatly impressed with the egx of Joel's User
yage. I sort of assumed that the book was
a mildly enhanced reprint of the HTML, but 7 of the 18 chapters are
completely new material. Based on a few quick Google searches, they
really are new. And the full color printing is fantastic!

I've read a bunch of UI books, and Joel's is easily in my top three. I'll
definitely be adding it to my

OceanofPDEF.com

Google’s Number One Ul Mistake

Google's user interface minimalism is admirable. But there's one part of their
homepage Ul, downloaded millions of times per day, that leaves me
scratching my head:

Google

Advanced Sezrch
FPreferences

[Google Search |W Language Tools

Does anyone actually use the "I'm Feeling Lucky” button? I've been an
avid Google user since 2000; I use it somewhere between dozens and
hundreds of times per day. But I can count on one hand the number of times
I've clicked on the "['m Feeling Lucky" bution.

I understand this was a clever little joke in the early days of Google—hey,
look at us, we're a search engine that actually works!—but is it really
necessary to carry this clever little joke forward ten years and display it on
the monitors of millions of web users every day? We get it already. Google
is awesomely effective. That's why I use it so much. That's why Google is
the start page for the internet, loading the Google homepage is virtually
synonymous with internet access, and the verb "to Google" is at risk of
becoming a genericized trademark. Google has won so decisively, so utterly,
and so completely that the power they now wield over the internet actually
scares me a little. Okay, it scares me a lot.

So can we get rid of the superfluous button now?

You might say , 50 where's the harm. I say giving a
feature that's used less than one percent of the time parity with the
"Search" button is a needless distraction for users. Furthermore, the "I'm
Feeling Lucky" button is only available on the homepage—it's not a part of
any browser toolbar searches, and Google's intermediate search page results
don't offer it, either. Why not standardize and stick with the simple, single
"Search" button that everyone understands and expects, on every page? Why
muddy the waters with a button that's so rarely useful, and on the homepage
of all places? The thought necessary to mentally omit this needless button
from the page may be miniscule—but multiply that by the millions upon
millions of users who are affected, and all of a sudden it starts to add up to
real time.

If you're an advanced computer user, you may be wondering why we bother
with Search buttons at all when we have a_ A

ke . As shocking as this may be to us , Not everyone
understands how that works. Sure, we think it's crazy to take our hand off the
keyboard, where we were just typing our search query, move it all the way
over to the mouse, then carefully move the mouse pointer to a button and
left-click it... when we could just take that very same hand, already poised
over the keyboard, and lazily tap the ENTER key.

But typical users . They love
their mice, and their big, fat, honking "Search" buttons. That's why the
current versions of Firefox and IE both have an integrated "go" button
directly next to the address bar—so users have something obvious to click
once they've typed the URL into the address bar. Otherwise, I guess, they'd
sit there wondering if their computer had frozen.

& Blank Page - Windows Internet Explorer

A, E |EI | ‘ ‘ ' |
@m v | 8] www.website, || X |

Personally, I always use the keyboard ENTER key to complete my searches,
but I'd be open to a keyboard shortcut such as SHIFT+ENTER that invoked

the Lucky function. I still can't imagine using it more than once a week at
most—and that's probably an optimistic estimate.

Strunk and White urged us to

“Vigorous writing is concise. A sentence should contain no unnecessary
words, a paragraph no unnecessary sentences, for the same reason that a
drawing should have no unnecessary lines and a machine no unnecessary
parts. This requires not that the writer make all his sentences short, or that he
avoid all detail and treat his subjects only in outline, but that every word
tell.”

I urge us to Omit Needless Buttons. I hope the "I'm Feeling Lucky" button
isn't considered at Google. Removing it would be one small
step for Google, but a giant collective improvement in the default search
user interface for users around the world.

OceanofPDF.com

But It’s Just One More

The mapping service is surprisingly difficult to use. It
certainly looks simple enough:

E034 Canal Blvd, Richmond, t|[Use current map wiew] =

What: Businass namea or cateqory. Where: dadvess, city, or othar place

Like everyone else, the first thing I do when I encounter a new mapping
solution is try my current address. In this case, it's my work address. But
when I press enter, I get this error:

“No results were found. Try another search, or if entering an address, enter it
in the Where box. Click help to learn more.”

This is admittedly a sample size of one. But everyone I know makes this
mistake when using Windows Live Local search for the first time. Yes,
the two text boxes are labeled. Sort of. But , ut
, even so-called professional computer users like ourselves.
There's simply one textbox too many on that form.

It may seem irrational to declare that two of anything is one too many, but
consider ;

7 Wy
If L1 % 'I

3 -""-..-‘k' f .I
%

Here's a stopwatch with one button. So this button must start, stop, and reset
the time. It's a little overloaded, but like an Ap , at least nobody
gets confused. In theory.

i A
1 Sy
I ~ (AN
! |
.-'.'
"y A
i e

Let's add one more button. Maybe one button starts and stops, and the other
resets? Or maybe one button starts and the other stops. But which one? It'll
take a bit of trial and error to get this to work.

Now we add another button. And an extra sweeping hand. I don't even know
where to begin. The complexity just went up exponentially.

This stopwatch has three colored buttons. And no sweeping hand. The colors
definitely help: red means stop, green means go. So I'm guessing black is
reset.

The last stopwatch illustrates that it is possible to add interface elements
without adding confusion. But you have to do it very carefully. If you have
to add "just one more..." of any UI element, be sure that you're not
adding the one UI element that breaks the camel's back.

OceanofPDFE.com

Just Say No

Derek Sivers relates an interesting

“In June of 2003, Steve Jobs gave a small private presentation about the
iTunes Music Store to some independent record label people. My favorite
line of the day was when people kept raising their hand saying, ‘Does it do
(x)?°, ‘Do you plan to add (y)?’. Finally Jobs said, “Wait wait—put your
hands down. Listen: I know you have a thousand ideas for all the cool
features iTunes could have. So do we. But we don't want a thousand
features. That would be ugly. Innovation is not about saying yes to
everything. It's about saying NO to all but the most crucial features.’"

I've worked on dozens of projects that have essentially killed themselves
with kindness: piling on feature after feature trying to be all things to all
users. This rarely ends well.

After a few years in the trenches, I think many software developers begin to
internalize the Just Say No philosophy. Both extremes are dangerous, but I
think Yes To Everything has a greater potential to fail the entire project. If
you're going to err on either side, try to err on the side of simplicity. Keep a
laser-like focus on doing a few things, and doing them exceptionally well.

It's easy to dismiss Just Say No as a negative mindset, but I think it is a
healthy and natural reaction to the observation that o
)IQ . It takes a lot more courage to say
"no" than it does to nod along in the hopes of pleasing everyone.

The implicit lesson is not to literally say no to everything—but to weigh
very carefully the things you are doing. For a very interesting case study,
check out Google Blogosoped's

OceanofPDEF.com

Ul Is Hard

Some users on the poor pre-game user interface in EA's

Poster #1: They need to stop hiring angry little men and romantically
spurned women to design user interfaces.

Poster #2: But doesn't that describe most programmers?
Poster #3: No, that describes all programmers.

It's funny because it's true. Not the romantically spurned part, mind you, but
the accusation that most programmers are bad at designing user interfaces.
That's partly because

“GUI builders make GUI programming look easy. Nearly anybody can
whip up a decent-looking GUI in no time at all using a GUI builder. Done.

“It is much harder to whip up a quick and dirty EJB system, giving the
impression that server-side coding is harder to do. A bad programmer will
continue to struggle with EJB, but a good programmer will find ways to
automate nearly every aspect of EJB. That's the secret of server-side
programming: it is very well-defined and repetitive. Thus, it can be
automated.

“Take your favorite Model-Driven-Architecture (MDA) tool. They work
best when generating server-side code, things like EJBs, database access
code, and web services. They might be able to generate a rudimentary GUI,
but a really GREAT GUI cannot be automated.”

But programmers are partly to blame, too. Most programmers be

“John almost hit on the most important point in all of this. No one else did.
When you're working on end-user software, and it doesn't matter if you're
working on a web app, adding a feature to an existing application, or

working on a plug-in for some other application, you need to design the Ul
first.

“This is hard for a couple of reasons. The first is that most programmers,
particularly those who've been trained through University-level computer
science courses, learned how to program by first writing code that was
intended to be run via the command line (Terminal window for you Mac OS
X users). As a consequence, we learned how to implement efficient
algorithms for common computer science problems, but we never learned
how to design a good UL.

“The second problem is that the tools we use to create Ul are often good
tools for more simple usability issues, but tend to fall well short when it
comes to designing Ul for a more complex set of user scenarios. Forms
designers are great when you're working within the problem domain that
forms are intended to solve, but once you step outside those problem
domains, the work gets much harder. Use a more flexible tool, like Xcode's
nib tool and the Mac OS X HIView object, and you're going to have to
write considerably more code just to manage the UI objects.”

This is also known as , but I can't find many other
references.

Become a Hyperink reader. Get a s

Like the book? Support our author and leave a !

OceanofPDEFE.com

IV.

Testing

OceanofPDF.com

Good Test/Bad Test

After years of building ad-hoc test harnesses, I finally adopted formal unit
testing on a recent project of mine using NUnit and TestRunner. It was
gratifyingly simple to get my first unit tests up and running;:

<TestFixture()>

Public Class UnitTests

Private TargetString As String
Private TargetData As Encryption.Data

<TestFixtureSetUp()> _
Public Sub Setup()

_TargetString = "an enigma wrapped in a mystery slathered in secret sauce”
_TargetData = New Encryption.Data(TargetString)
End Sub

<Test(), Category("Symmetric"j> _

Public Sub MyTest()
Dim s As New Encryption.Symmetric(Encryption.Symmetric.Providers.DES)
Dim encryptedData As Encryption.Data
Dim decryptedData As Encryption.Data

encryptedData = s.Encrypt(TargetData)

decryptedData = s.Decrypt(encryptedData)
Assert.AreEqual(TargetString, decryptedData.ToString)
End Sub
End Class

It's a great system because I can tell what it does and how it works just by
looking at it. You can't knock simplicity. The problem with unit testing, then,
is not the implementation. It's determining what to test. And how to test it.
Or, more philosophically, what makes a good test?

You'll get no argument from me on the fundamental value of unit testing.
Even the most trivially basic unit test, as shown in the code sample above, is
a huge step up from the testing most developers perform—which is to say,
most developers don't test at all! They key in a few values at random and
click a few buttons. If they don't get any unhandled exceptions, that code is
ready for QA!

The real value of unit testing is that it forces you to stop and think about
testing. Instead of a willy-nilly ad-hoc process, it becomes a series of hard,
unavoidable questions about the code you've just written:

How do I test this?
What kinds of tests should I run?

What is the common, expected case?

What are some possible unusual cases?

How many external dependencies do I have?

What system failures could I reasonably encounter here?

Unit tests don't guarantee correct functioning of a program. I think it's
unreasonable to expect them to. But writing unit tests does guarantee that the
developer has considered, however briefly, these truly difficult testing
questions. And that's clearly a step in the right direction.

One of the other things that struck me about unit testing was the challenge of

balancing unit testing with the massive refactoring all of my projects tend to

go through in their early stages of development. And,
, I'm not the only developer with this concern:

“My main problem at the moment with unit tests is when I change a design 1
get a stack of failing tests. This means I'm either going to write less tests or
make fewer big design changes. Both of which are bad things.”

To avoid this problem, I'm tempted to take the old-school position that tests
should be coded later rather than sooner, which runs counter to the hippest
theories of . How do you balance the need to write unit
tests with the need to aggressively refactor your code? Does test-first reduce
the refactoring burden, or do you add unit tests after your design has
solidified?

OceanofPDE.com

Unit Testing vs. Beta Testing

Why does Wil Shipley, the s

“I've certainly known companies that do ‘unit testing’ and other crap
they've read in books. Now, you can argue this point if you'd like, because I
don't have hard data; all I have is my general intuition built up over my
paltry 21 years of being a professional programmer.

“I..] You should test. Test and test and test. But I've NEVER, EVER seen a
structured test program that (a) didn't take like 100 man-hours of setup time,
(b) didn't suck down a ton of engineering resources, and (c) actually found
any particularly relevant bugs. Unit testing is a great way to pay a bunch of
engineers to be bored out of their minds and find not much of anything. [I
know—one of my first jobs was writing unit test code for Lighthouse
Design, for the now-president of Sun Microsystems.] You'd be MUCH,
MUCH better offer hiring beta testers (or, better yet, offering bug bounties
to the general public).

“Let me be blunt: YOU NEED TO TEST YOUR DAMN PROGRAM. Run
it. Use it. Try odd things. Whack keys. Add too many items. Paste in a 2MB
text file. FIND OUT HOW IT FAILS. I'M YELLING BECAUSE THIS IS
IMPORTANT.

“Most programmers don't know how to test their own stuff, and so when
they approach testing they approach it using their programming minds: ‘Oh,
if I just write a program to do the testing for me, it'll save me tons of time
and effort.””

It's hard to completely disregard the opinion of a veteran developer shipping
an application that gets . Although his opinion may seem
heretical to the cognoscenti, I think he has some
valid points:

e Some bugs don't matter. Extreme unit testing may reveal.. extremely
rare bugs. If a bug exists but no user ever encounters it, do you care? If
a bug exists but only one in ten thousand users ever encounters it, do
you care? Even Joel Spolsky ree on this point. Shouldn't
we be fixing bugs based on data gathered from actual usage rather than
a stack of obscure, failed unit tests?

* Real testers hate your code. A unit test simply verifies that something
works. This makes it far, far too easy on the code. Real testers hate
your code and will do whatever it takes to break it—feed it garbage,
send absurdly large inputs, enter unicode values, double-click every
button in your app, etcetera.

e Users are crazy. Automated test suites are a poor substitute for real
world beta testing by actual beta testers. Users are erratic. Users have
favorite code paths. Users have weird software installed on their PCs.
Users are crazy, period. Machines are far too rational to test like users.

While I think basic unit testing can complement formal beta testing, I tend
to agree with Wil: the real and best testing occurs when you ship your
software to beta testers. If unit test coding is cutting into your beta testing
schedule, you're making a very serious mistake.

OceanofPDE.com

Sometimes It’s a Hardware Problem

One of our best servers at work was inherited from a previous engagement
for x64 testing: it's a dual Opteron 250 with 8 gigabytes of RAM. Even after
a year of service, those are still decent specs. And it has a nice upgrade
path, too: the I motherboard it's based on supports up to
16 gigabytes of memory, and

Anyway, we have it set-up for , running
Windows Server 2003 x64. However, there was some anomalous behavior:

e Virtual Server reported weird error messages: "Some nodes of this
machine do not have local memory. This can cause virtual machines to
run with degraded performance."”

e The machine spontaneously rebooted during the day and overnight.

We've used this server for over a year and never experienced anything
problematic with it. The weirdness only started with the server's new role.

The first thing we did was update the BIOS to the latest version, and
make sure we had all the latest x64 chipset and platform drivers
installed. This is always a good first troubleshooting step—it's the
hardware equivalent of taking two aspirins and calling in the morning. This
resolved the "some nodes of this machine do not have local memory" error.
However, the machine still spontaneously rebooted overnight, even with the
latest BIOS and drivers.

At this point I began to suspect a hardware problem. Troubleshooting
hardware stability can be difficult. But you can troubleshoot hardware
stability quite effectively with the right software: and

1. Testing memory stability with

We started with Memtest86+ because we already suspected the memory.
Memtest86+ isn't the only memory testing diagnostic out there, but it's

probably the most well-known. Microsoft also offers their

Memtest86+ is

utility, which works exactly the same way.

We chose the ISO image, which we burned to CD. Boot from the

Memtest86 CD, and it'll kick off the test run.

Pass 8+ Hin
Athlon 64 X2 1048 MHz Test 1x

1 Cache: 1ZBK 165ZMB-= Tezt #4 [Moving inversions, random patternl

Z Cache:

iemory
Chipset :

WallTime

10Z4K
192H

835HB-=

Intel i440BX

Cached BRsudHMem

Testing: 108K - 192HM 192H
Pattern: 45aZd444d

HemMap ache ECC Test Pass Errors ECC Errs

atd

(ESCIReboot

icliconf iguration

(SPiscroll_leck (CR)scroll_unlock

It took about 30-45 minutes to test 4 gigabytes of memory. The progress bar
at the top right gives you an indication of how long the test has to run; there
are 8 total tests in the standard test run. Beware, because it'll start repeating

at test #1 after the first pass!

2. Testing CPU stability with

Prime95 is my single favorite PC stability testing tool. If your PC can't pass
an overnight Prime95 run, it absolutely, positively has a hardware problem.
(CPUs are almost never defective; it's usually a heat or power supply
related failure.) Although Prime95 is primarily a CPU test, it can also be a
pretty good memory test, too. After downloading it, go to the Options menu
and select Torture Test.

If you want to test CPU stability exclusively, choose "Small FFTs."

If you want to test for CPU stability and memory stability, choose "Blend."

If you have a Dual (or Quad) CPU machine, you must run multiple
instances of Prime95 to load each CPU. The easiest way to do this is to
copy the Prime95 folder and run multiple executables, each one from a
unique folder. You may want to set CPU affinity on the executables with
Task Manager, but the scheduler will take care of loading all the CPUs just
fine by itself.

A bit of warning, though: when Prime95 says "lots of RAM tested," they
mean it. We tried running two instances of "Blend" with only 4 gigabytes of
memory installed on the server and we nearly crushed the pagefile; both
instances allocated nearly 6 gigabytes!

S
" Small FFTs [masimurn FPU stress, data fits in L2 cache, BaM not tested much) oK

" In-place large FFT s [magimum heat, power consumption, some Bak tested] c I
ance

O Blend [tests some of everything, |ots of RAM tested)

" Custam
(— Torture test settings
i EET sz fim bl |::i W EwEET s ikl 4056

[T Aun FET=inplace temonte use (i E] I [0
Timestororeeach FET size (in minutes]: I'l B

In my experience, Prime95 will error out almost immediately if your CPUs
or memory are unstable. This is great for troubleshooting because you know
quickly if there's a problem or not. If you can run Prime95 "small FFTs" for
an hour, it's highly likely that the CPU isn't your problem. And if you can
run the same test overnight, CPU problems can be definitively ruled out.

In the case of our wayward server, Memtest86+ showed us rare, intermittent
memory problems. But Prime95 consistently failed almost immediately
when running the "blend" test. When we switched Prime95 to "small FFTs,"
it ran two instances for an hour just fine. Clearly a memory issue! Using a
combination of Memtest86+ and Prime95, we found that our server was
totally stable with 4 gigabytes of memory installed; the minute we put in
all 8 gigabytes, we couldn't pass one or both tests.

Since 8 gigabytes of memory is essential for a VM server, removing
memory wasn't an option. On a hunch, I switched the memory speed from

200 MHz to 166 MHz in the BIOS. Now both Prime95 blend and
Memtest86+ pass without incident.

Although software is notoriously unreliable, we can't always blame the
software. Sometimes you really do have a hardware problem.

OceanofPDEF.com

Exception-Driven Development

If you're waiting around for users to tell you about problems with your
website or application, you're only seeing a tiny fraction of all the problems
that are actually occurring. The proverbial tip of the iceberg.

Also, if this is the case, I'm sorry to be the one to have to tell you this, but
you kind of suck at your job—which is to know meore about your
application's health than your users do. When a user informs me about a
bona fide error they've experienced with my software, I am deeply
embarrassed. And more than a little ashamed. I have failed to see and
address the issue before they got around to telling me. I have neglected to
crash responsibly.

The first thing any responsibly run software project should build is an
exception and error reporting facility. Ned Batchelder likens this to

“When a problem occurs in your application, always check first that the
error was handled appropriately. If it wasn't, always fix the handling code
first. There are a few reasons for insisting on this order of work:

1. With the original error in place, you have a perfect test case for the bug
in your error handling code. Once you fix the original problem, how
will you test the error handling? Remember, one of the reasons there
was a bug there in the first place is that it is hard to test it.

2. Once the original problem is fixed, the urgency for fixing the error
handling code is gone. You can say you'll get to it, but what's the rush?
You'll be like the guy with the leaky roof. When it's raining, he can't fix
it because it's raining out, and when it isn't raining, there's no leak!”

You need to have a central place that all your errors are aggregated, a place
that all the developers on your team know intimately and visit every day. On
Stack Overflow, we use a custom fork of

&, Error Log for /LM/W3SVC/4/R0O0... x

8 Errors; last 44 sec ago

Type Error url Time
Argument messagetypeid X /messages/mark-as-read 09/02/11 00:59:55
Argument messagetypeid X /messages/mark-as-read 09/02/11 00:50:21
Argument meszagetypeid X /mezzages/mark-as-read 05/02/11 00:49:44
Argument messagetypeid X /messzages/mark-as-read 09/02/11 00:40:51
MullReference Ohject reference not set to an instance of an object. X Jusers/authenticate 09/02/10 22:26:43
NullReference Cbject reference not set to an instance of an object. X [users/authenticate 0%/02/10 22:26:05
MullReference Object reference not set to an instance of an object. X Jusers/authenticate 09/02/10 22:25:32
Validation Email has an invalid value: does not appear to be valid X /users/authenticate 09/02/10 21:44:37

We monitor these exception logs daily; sometimes hourly. Our exception
logs are a de-facto to do list for our team. And for good reason. Microsoft
has collected similar sorts of failure logs for years, both for themselves and
other software vendors, under the banner of their Windows Error Reporting
service. The is compelling:

“When an end user experiences a crash, they are shown a dialog box which
asks them if they want to send an error report. If they choose to send the

report, WER collects information on both the application and the module
involved in the crash, and sends it over a secure server to Microsoft.

“The mapped vendor of a bucket can then
analyze it to locate the source of the problem, and provide solutions both
through the end user error dialog boxes and by providing updated files on
Windows Update.

“Broad-based trend analysis of error reporting data shows that 80 percent of
customer issues can be solved by fixing 20 percent of the top-reported bugs.
Even addressing one percent of the top bugs would address 50 percent of the
customer issues. The same analysis results are generally true on a company-
by-company basis t00.”

Although , the speculative nature of
the time investment is one problem I've always had with it. If you fix a bug
that no actual user will ever encounter, what have you actually
fixed? While there are , as a pure
bug fixing mechanism it's always seemed far too much like premature
optimization for my tastes. I'd much rather spend my time fixing bugs that
are problems in practice rather than theory.

You can certainly do both. But given a limited pool of developer time, I'd
prefer to allocate it toward fixing problems real users are having with my
software based on cold, hard data. That's what I call Exception-Driven
Development. Ship your software, get as many users in front of it as
possible, and intently study the error logs they generate. Use those exception
logs to hone in on and focus on the problem areas of your code. Rearchitect
and refactor your code so the top 3 errors can't happen any more.
Ia ,, deploy, and repeat the process. This data-driven feedback loop is so
powerful you'll have (at least from the users' perspective) a rock stable app
in a handful of iterations.

Exception logs are possibly the most powerful form of feedback your
customers can give you. It's feedback based on shipping software that you
don't have to ask or cajole users to give you. Nor do you have to interpret
your users' weird, semi-coherent ramblings about what the problems are.
The actual problems, with stack traces and dumps, are collected for you,
automatically and silently. Exception logs are the ultimate in customer
feedback.

@lazycoder getting real feedback from
customers by shipping is more valuable
than any amount of talking to or about
them beforehand

Carnage4Ll.ife

Dare Obasanjo

Am I advocating shipping buggy code? Incomplete code? Bad code? Of
course not. I'm saying that the sooner you can get your code out of your
editor and in front of real users, the more data you'll have to improve your
software. Exception logs are a big part of that; so is usage data. And you
should talk to your users, too. If you can bear to.

Your software will ship with bugs anyway. Lveryone's software does. Real
software crashes. Real software loses data. Real software is hard to learn,
and hard to use. The question isn't how many bugs you will ship with, but
how fast can you fix those bugs? If your team has been practicing
exception-driven development all along, the answer is—why, we can
improve our software in no time at all! Just watch us make it better!

And that is sweet, sweet music to every user's ears.

Become a Hyperink reader. Get a special surprise.

Like the book? Support our author and leave a comment!

OceanofPDFE.com

Know Your User

OceanofPDEF.com

The Rise and Fall of Homo Logicus

Of all the professional hubris I've observed in software developers, perhaps
the greatest sin of all is that we consider ourselves typical users. We use
the computer obsessively, we know a lot about how it works, we even give
advice to friends and relatives. We are experts. Who could possibly design
software better than us superusers? What most developers don't realize is
how freakishly outside the norm we are. We're not even remotely average—
we are the edge conditions. I've often told program managers: if

In , Alan Cooper labels this
phenomenon Homo Logicus:

“Homo logicus desires to have control over things that interest them, and
the things that interest them are complex, deterministic systems. People are
complex, but they don't behave in a logical and predictable way, like
machinery. The best machinery is digital, because it can be the most
complex, sophisticated, and easily changed by the programmer.

The price of control is always more effort and increased complexity. Most
people are willing to make a moderate effort, but what differentiates
programmers from most people is their willingness and ability to master
extreme complexity. It is a satisfying part of the programmer's job to know
and manage systems composed of many interacting forces. Flying airplanes
is the archetypal programmer's avocation. The cockpit control panel of an
airplane is packed with gauges, knobs, and levers, but programmers thrive
on those daunting complexities. Homo logicus finds it fun and engaging,
despite (because of!) the months of rigorous study required. Homo sapiens
would rather ride along as passengers.

For Homo logicus, control is their goal and complexity is the price they will
pay for it. For normal humans, simplicity is their goal, and relinquishing
control is the price they will pay. In software-based products, control
translates into features. For example, in Windows 95, the "Find File"
function gives me lots of control over the procedure. I can specify which
area of my disk to search, the type of file to search for, whether to search by

file name or by file contents, and several other parameters. From a
programmer's point of view, this is very cool. For some extra up-front effort
and understanding, he gets to make the search faster and more efficient.
Conversely, the user's point of view is less rosy because he has to specify
the area of the search, the type of file to search for, and whether to search
by name or contents. Homo sapiens would gladly sacrifice the odd extra
minute of compute time if they didn't have to know how the search function
works. To them, each search parameter is just another opportunity to enter
something incorrectly. The probability of making a mistake and the search
function failing is higher, not lower, with the added flexibility. They would
gladly sacrifice all that unnecessary complexity, control, and understanding
in order to make their job simpler.

Homo logicus are driven by an irresistible desire to understand how things
work. By contrast, Homo sapiens have a strong desire for success.While
programmers also want to succeed, they will frequently accept failure as the
price to pay for understanding. There's an old joke about engineers that
gives some insight into this need to understand.

Three people are scheduled for execution: a priest, an attorney, and an
engineer. First, the priest steps up to the gallows. The executioner pulls the
lever to drop the hatch, but nothing happens. The priest claims divine
intervention and demands his release, so he is set free. Next, the attorney
takes a stand at the gallows. The executioner pulls the lever, but again
nothing happens. The attorney claims another attempt would be double
jeopardy and demands release, so he is set free. Finally, the engineer steps
up to the gallows, and begins a careful examination of the scaffold. Before
the executioner can pull the lever, he looks up and declares, ‘Aha, here's
your problem.’”

Cooper goes on to list a few more traits of Homo Logicus:

trades simplicity for control

exchanges success for understanding

focuses on what is possible to the exclusion of what is probable

acts like a jock

Pity the poor user, merely a Homo Sapiens, who isn't interested in
computers or complexity; he just wants to get his job done.

Anybody can build a complex application that nobody can figure out how
to use. That's easy. Building an application that's simple to use.. well, now
that takes actual skill. I'm not sure you need high priced

designers to achieve this goal, but you do have to stop thinking like
Homo Logicus—and start thinking like Homo Sapiens.

OceanofPDE.com

Ivory Tower Development

I've always discouraged ivory tower development—teams where
developers are cloistered away for years in their high towers, working on
technical software wizardry. These developers have no idea how users will
respond to their software they're creating. They probably couldn't even tell
you the last time they met a user! In the absence of any other compelling
evidence, developers assume everyone else is a developer. I hope I don't
have to tell you how dangerous that is.

In my experience, the more isolated the developers, the worse the resulting
end product. It doesn't help that most teams have a layer of business
analysts who feel it is their job it to shield developers from users, and vice-
versa. It's dangerous to create an environment where

“I gave a presentation to an all-hands meeting for a division of Sun, and I
asked the group to raise their hands if they'd met a live customer in the last
30 days. Couple of hands went up. “The last 90 days?’ One more. ‘The last
year?’ Another two. There were over 100 people in that room directly
responsible for deliverables that went straight to users... in this case, Java
training courses.

“This flies in the face of some software development models that believe if
you've done your specifications right, there should be no need for the
‘workers’ (programmers, writers, etc.) to ever come in contact with real
users. That's nonsense. What users are able to articulate before they have
something is rarely a perfect match for what they say after they've actually
experienced it. It's just like market research: people can't tell you in advance
exactly how they'll react to something. They just have to try it. And you
have to be there to watch. And listen. And learn. And then take what you
learned and go back and refine. Which is why the old waterfall model is
pretty much the worst thing to ever happen to users.”

Make the effort to expose your developers to users throughout your
project lifecycle. Bring one developer from your team to every meeting

with users. Involve developers in your usability and acceptance testing.
Nothing removes a developer's blinders faster than seeing a
typical user struggle with basic computer applications. Developers simply
cannot comprehend that the average user doesn't even know what
ALT+TAB does, much less how to use it. They have to see it to believe it.

Most projects I work on these days are internal. I define internal projects as
projects where users are forced to use your application whether they
want to or not. So much for free will. And, too many times, so much for
concerns about software quality. As Joel says:
.. It's true. And it is sad. This is another form of
Ivory Tower Development: what incentive do I have to care about the
concerns of our "customer" when their job requires them to use my
application?

I'd much rather work on projects with paying customers, or at least treat
internal projects as if users were paying real money for your product. That
engenders what calls a

“When people buy software from you, they expect a lot, both now and in
the future:

e They trust that your product will work on their machines.
e They trust that you will help them if they have problems.
e They trust that you will continue to improve the product.

e They trust that you will provide them with a reasonable and fairly
priced way of getting those improved versions.

e They trust that you are not going out of business anytime soon.

So, by asking users to pay for your software, you are asking them to trust
you. But how much do you trust them?

The vendor/user relationship is like a relationship between two people. And
relationships don't work without mutual trust. If one side expects trust but is
unwilling to give it, the relationship will fail. So often I see software
entrepreneurs who don't want to trust their users at all. It is true that trusting
someone makes us vulnerable. Just as in a human relationship, trust is a

risk. We might get hurt. But without that trust, the relationship isn't going to
work at all.”

I've actually begun to think that internal departments [of large
companies] should act as micro-ISVs, charging their users for the
applications they build, and actively marketing and selling them to other
groups inside the organization. I think that would lead to a leaner, meaner,
and ultimately more healthy organization. Plus, the le projects so
common at large companies would die naturally due to lack of demand.

OceanofPDE.com

This Is What Happens When You Let
Developers Create Ul

Deep down inside every software developer, there's a budding graphic
designer waiting to get out. And if you let that happen, you're in trouble.
Or at least your users will be, anyway:

wGetGUI v1.0 | You are using GMU Wget 1.9-beta - 1.7 is minimum.

URL: I __J — Retrieval Optionz
— Hogts - = v Mo clobber
[Spanal | Clear [T Timestamping
v .-’-'-.lIIDw LI ¥
Lizt-» [T Continue file download
Reject = Duota (kB o
T st =| Clear l
: q 3 [Spider [check for files]
"?CC;E;F;?I??H - —Specill——— 1 Running Optionz [T Modiectaries
¥ Reject: P
i efries: I-|[| [T Go2 background [0 e oo
[himll] [aif = _)
Additional Parameters: [~ Moinfa [Save to custom di
ipg ok | W &l info |
[ap | exe v Actlike a browser 18 hmetita [Clear Server Cache
[doc [Al ¥ Convert links [l risnaie st ¥ Becuisive Ratisval
Cuztom lizt: Iv lagnore rabots. b [| Esiciwile Lol Depth; |I:I
“thm* = : LT
*“thurnb® Clear canhaos o | Logfile: |default.lng v Download "as-is"
zmall : ;
_T_I Save | Load About Exit | ket
zethings zethings ™ add HTML suffix
Start wiGetStart bat | Add to wGetStart.batl E mpty wGetStarl.batI [Dnlygo deeper

Joseph Cooney calls this

“A developer needed a screen for something, one or two text boxes and not
much more, so they created ‘the dialog’, maybe just to ‘try something out’
and always with the intention of removing it before the product ships. They
discovered they needed a few more parameters, so a couple more controls
were added in a fairly haphazard fashion. ‘The dialog’ exposes ‘the
feature,” something cool or quite useful. Admittedly ‘the feature’ is more
tailored towards power users, but it's still pretty cool. The developer thinks

of new parameters that would make ‘the feature’ even more powerful and
so adds them to the dialog. Maybe a few other developers or power users
see ‘the dialog’ and also like ‘the feature.” But why doesn't it expose
this parameter? New controls are added. Pretty soon the technical team are
so used to seeing ‘the dialog’ the way it is that they become blind to its
strange appearance. Ship time approaches and the product goes through
more thorough testing, and ‘the dialog’ is discovered, but it is too late to be
heavily re-worked. Instead it is given a cursory spruce-up.”

If you let your developers create your Ul, hilarity ensues, as in

). But when is unleashed upon unsuspecting
users, it's more like a horror movie. I still get chills. And like a bad horror
movie franchise, , folks.

Friends don't let friends produce Developer UL

Part of being a good software developer is knowing your limits. Either copy,
, or have the good sense to stick to
coding and leave the graphic design to the experts.

OceanofPDF.com

Defending Perpetual Intermediacy

How many things would you classify yourself as "expert" at? I drive to and
from work every day, but I hardly consider myself an expert driver. I brush
my teeth at least twice every day, and I'm no expert on oral care; just ask
my dentist. I use Visual SourceSafe all the time, but I rarely use the more
esoteric branching, pinning, and rollback features. I have to look through
the help files when I do those things. I am a perpetual intermediate at a
vast array of tasks, and expert at only a very, very tiny number of tasks. In
“ ,” Alan Cooper makes a similar case
for users as perpetual intermediates:

“The experience of people using interactive systems—as in most things—
tends to follow the classic bell curve of statistical distribution. For any
silicon-based product, if we graph the number of users against their
particular skill level, there will be a few beginners on the left side, a few
experts on the right, and a preponderance of intermediate users in the
center.

“But statistics don't tell the whole story. This is a snapshot frozen in time,
and while most people—the intermediates—tend to stay in that category for
a long time, the people on the extreme ends of the curve—the beginners and
experts—are always changing. The difficulty of maintaining a high level of
expertise means that experts come and go rapidly. Beginners, on the left
side of the curve, change even more rapidly.

“Although everybody spends some minimum time as a beginner, nobody
remains in that state for long. That's because nobody likes to be a beginner,
and it is never a goal. People don't like to be incompetent, and beginners—
by definition—are incompetent. Conversely, learning and improving is
natural, rewarding, and lots of fun, so beginners become intermediates very
quickly. For example, it's fun to learn tennis, but those first few hours or
days, when you can't return shots and are hitting balls over the fence are
frustrating. After you have learned basic racket control, and aren't spending
all of your time chasing lost balls, you really move forward. That state of
beginnerhood is plainly not fun to be in, and everybody quickly passes

through it to some semblance of intermediate adequacy. If, after a few days,
you still find yourself whacking balls around the tennis court at random,
you will abandon tennis and take up fly-fishing or stamp collecting.

“The occupants of the beginner end of the curve will either migrate into the
center bulge of intermediates, or they will drop off of the graph altogether
and find some activity in which they can migrate into intermediacy.
However, the population of the graph's center is very stable.When people
achieve an adequate level of experience and ability, they generally stay
there forever. Particularly with high cognitive friction products, users take
no joy in learning about them. So they learn just the minimum and then
stop. Only finds learning about complex systems to be fun.”

Cooper goes on to decry the way software development is traditionally
driven by opposite ends of the spectrum—developers as advocates for
expert users, and marketing as advocates for beginners (which is typically
their audience). Who speaks for the intermediate users?

I'll take this a bit further: I think intermediate users are the only users
that matter. The huge body of intermediate users is so dominant that you
can and should ignore both beginner and expert users. Developing software
to accommodate the small beginner and expert groups consumes too much
time and ultimately makes your application worse at the expense of your
core user base—the intermediates. Beginners should either become
intermediates or, in a manner of speaking, die trying. As for software
targeting expert users exclusively (aka, developers), that's a tiny niche
deserving of an entirely different design approach.

In my opinion, one of the most powerful tools we have for targetting
intermediate users is the . IUI, as a concept, is
actually quite simple: take the best design elements of the web..

e Back button
¢ Single-click hyperlink navigation

e Activity-centric "everything on one page" model

and combine those with the best design elements of traditional GUIs..

e Rich interface
e High performance
e Leverages client resources (disk, memory, visuals)
The first major application to utilize IUI was . My

wife uses Money, and I distinctly remember installing Money 2000, and
being absolutely blown away by how effective the Ul was:

“The IUI model was developed during the creation of Microsoft Money
2000, an application for managing personal finances. Money 2000 is the
product's eighth major release. Money 2000 is a large Microsoft Windows
program with well over one million lines of code. Money 2000 is a Web-
style application. It is not a Web site, but shares many attributes with Web
sites. Its user interface consists of full-screen pages shown in a shared
frame, with tools for moving back and forward through a navigational
stack. On this foundation, Money 2000 adds a set of new user interface
conventions that create a more structured user experience.”

The design is nothing more than good
programming in practice: never write what you can steal. And stealing the
wildly successful web UI metaphors is such an utter no-brainer. The only
question I have is why it's taking so long.

We have bits and pieces of IUI in Windows XP (try Control Panel, User
Accounts), and there's a lot of evidence that Microsoft
. But we don't have to wait for Longhorn;
as responsible .NET developers, we should be building IUI interfaces today
—as in this

QOceanofPDE.com

Every User Lies

Heidi Adkisson notes that , but the people buying
those products often don't use the very features they bought the product
for in the first place.

“A few years ago I did an extensive in-home study observing use of a
particular computer hardware peripheral. Most people had high-end models
with many features. But in my observation of use, only one ‘power user’
went beyond using anything but the core, basic features. These people had
paid a premium for features they didn't use. However, when describing their
purchase experience, it was clear they aspired to using these features and
sincerely intended to. But, once the product was out of the box, the paradox
of the active user took over. They never invested even the smallest amount
of time to go beyond the basics (even though the extra features could have
saved them time).

“In my experience it's people's aspiration for the experience that drives
purchasing decisions. Ultimately, their aspirations may be different than the
reality.”

It's interesting that Heidi used the hedge phrase "may be different"” when
her own study data showed that users' aspirations and reality were
almost always different. Maybe she aspires to live in a world where
aspirations and reality aren't so wildly divergent. I don't blame her. It'd be
nice.

That disparity is why it's so important to
versus the way they tell you they behave. People who do this
professionally are called "economists.” Observation is a powerful skill, and
so is learning to disregard what people tell you in favor of judging them by
their actions. No actions are more carefully considered than those that result
in money flowing out of your pocket. That's why you owe it to yourself to
read books like ,” and maybe even
magazine. It's also why the should be a part
of your regular reading routine if it isn't already.

People lie not because they're all evil liars (although a few inevitably will
be), but because they're usually lying to themselves in some way. Some lies
are useful. Small social "white" lies grease the skids of social reality.
Penetrating this veil of lies and intentions is one of the central themes of the
excellent television show House, M.D.:

The show plays up subtle connections between the House character and
Sherlock Holmes, which is appropriate, because it's very much a detective
show at heart. The character Gregory House, as played by the brilliant
Hugh Laurie, is fond of stating "Everybody lies.” Parsing through all the
irrational human behavior, and the inevitable lies—white or otherwise—
makes for a gripping detective story indeed when lives are at stake.

Heidi referenced the Paradox of the Active User, which has been around as
a concept since 1987. I highly recommend reading the original paper, but if
you don't have time, Jakob Nielsen summarizes:

“Users never read manuals but start using the software immediately. They
are motivated to get started and to get their immediate task done: they don't

care about the system as such and don't want to spend time up front on
getting established, set up, or going through learning packages.

“The ‘paradox of the active user’ is a paradox because users would
save time in the long term by learning more about the system. But that's not
how people behave in the real world, so we cannot allow engineers to build
products for an idealized rational user when real humans are irrational. We
must design for the way users actually behave.”

There are a bunch of ways to restate the paradox of the active user. Cooper
calls it per .. I think the easiest way to explain it is
this:every user lies. Instead of asking users if they love your software—of
course they love your software, it'd be rude to tell the people responsible
just how mind-numbingly awful it really is—do what Gregory House does.
. Rely on
that behavioral data to design your software, and not the lies of your users,
however well intentioned they may be.

OceanofPDEFE.com

Shipping Isn’t Enough

Part of is this
nugget:

“Programming is fun. It is the joy of discovery. It is the joy of creation. It is
the joy of accomplishment. It is the joy of learning. It is fun to see your
handiwork displaying on the screen. It is fun to have your co-workers
marvel at your code. It is fun to have people use your work. It is fun have
your product lauded in public, used by neighbors, and discussed in the
press. Programming should be fun and if it isn't, figure out what is making
it not fun and fix it. However, shipping isn't fun. I often have said that
shipping a product feels good, like when someone stops hitting you. Your
job is completing the product, fixing the bugs, and shipping. If bugs need
fixing, fix them. If documentation needs writing, write it. If code needs
testing, test it. All of this is part of shipping. You don't get paid to program,
you get paid to ship. Be good at your job.”

It's true. One key measure of success for any programmer is how much
code you've shipped. But merely shipping is not enough. A more
meaningful measure of success is to ask yourself how much code you've
shipped to living, breathing, real-world users. But then
, either.

How many users actually use your application? Now that's the ultimate
metric of success.

But it's a little scary when you start doing the math. Rich Skrenta ex

“I was just an engineer in this group, but the reality of what was happening
in the market to our product line started to seep in. Here I was putting all of
this effort into stuff that never would be used by anyone. It was still
intellectually challenging...like doing crossword puzzles or something. But
it had no utility to the world.

“I started to look around and I saw many other examples of groups working
on stuff that no one would ever use or care about. Mobile IP initiatives,

endless work around standards that nobody cared about, research from the
labs that would never be applied or even cited.

“Yikes.

“I had written stuff that people actually used, before. It felt good. I had
written a usenet newsreader that was used by hundreds of thousands of
people. I was running an online game, as a commercial hobby on the side,
which had several hundred paying customers. Sheesh, I thought. My side
projects have more customers than my day job.

“So I made a simple resolution. I wanted to work on stuff that people would
actually use.

“This sounds simple. But if you walk the halls of Sun, AOL, HP, IBM,
AOL, Cisco, Siebel, Oracle, any university, many startups, and even Google
and Yahoo, you'll find people working on stuff that isn't going to ship. Or
that if it does ship, it won't be noticed, or won't move the needle. That's
tragic. It's like writing a blog that nobody reads. People make fun of
bloggers who are writing ‘only for their mother.” But what about the legion
of programmers writing code paths that will never be traversed?”

It's for precisely this reason that

A

software developer that doesn't write code—sacrilege, right?

But wait a minute. A smart software developer knows that there's no point
in writing code if it's code that nobody will see, code that nobody will use,
code that nobody will ultimately benefit from. Why build a permanently
vacant house?

A smart software developer realizes that their job is far more than writing
code and shipping it; their job is to build software that people will
actually want to use. That encompasses coding, sure, but it also includes a
whole host of holistic, non-coding activities that are critical to the overall
success of the software. Things like , 0,
,, all the way up to the itself. If
you get that stuff wrong, it won't matter what kind of code you've written.

If, like Rich Skrenta, you want to work on software that people want to use,
realize that it's part of your job to make that software worth using.

OceanofPDE.com

Don’t Ask—QObserve

James Surowiecki, author of , writes about (he
in a recent New Yorker column:

“A recent study by a trio of marketing academics found that when
consumers were given a choice of three models, of varying complexity, of a
digital device, more than sixty per cent chose the one with the most features.
Then, when the subjects were given the chance to customize their product,
choosing from twenty-five features, they behaved like kids in a candy store.
(Twenty features was the average.) But, when they were asked to use the
digital device, so-called "feature fatigue" set in. They became frustrated with
the plethora of options they had created, and ended up happier with a simpler
product.”

It's impossible to see that you're creating a frankenstein's monster of a
product—until you attempt to use it. It's what I call the all-you-can-eat
buffet problem. There's so much delicious food to choose from at the
buffet, and you're so very hungry. Naturally you load up your plate with wild
abandon. But after sitting down at the table, you belatedly realize there's no
way you could possibly eat all that food.

In all fairness, sometimes people do, in fact, want complexity. The newly
e is intentionally complex. Google's
Marissa Mayer noted, “it was important where our classic minimalism
wasn't working that we adapt."

Coug

, B & W
MM 00N 54 gea 28A |)l

Google 24 | I'm Feeling Lucky
CHH Y CESH Y OIZDM | EHEEE | MHER
A M SII= W2 B3

:@D-u-nn

Grmail el = EH HA3E Picass

IesEs | 20 T2 | Google Y | Google,com in English

ER007 Google

This echoes an earlier blog_post by _Donald Norman describing the way
South Koreans seek out complexity in luxury goods:

“I recently toured a department store in South Korea. Visiting department
stores and the local markets is one of my favorite pastimes whenever I visit a
country new to me, the better to get to know the local culture. Foods differ,
clothes differ, and in the past, appliances differed: appliances, kitchen
utensils, gardening tools, and shop tools.

“I found the traditional ‘white goods’ most interesting: Refrigerators and
washing machines. The store obviously had the Korean companies L.G and
Samsung, but also GE, Braun, and Philips. The Korean products seemed
more complex than the non-Korean ones, even though the specifications and
prices were essentially identical. “Why?’ I asked my two guides, both of

whom were usability professionals. ‘Because Koreans like things to look
complex,’ they responded. It is a symbol: it shows their status.”

What's particularly telling in the study Surowiecki cites is the disconnect
between what people say they want and what they actually want. You'll find
this theme echoed over and over again in usability circles: what users say
they will do, and what they actually do, are often two very different
things. That's why asking users what they want is nearly useless from a
usability perspective; you have to observe what users actually do. That's
what is. Instead of asking consumers what features they
wanted in a digital camera, the study should have presented them with a few
digital camera prototypes and then observed how they were used.
Consumers' success or failure interacting with the prototypes tells us more
than a thousand surveys, questionnaires, or focus groups ever could.
Unfortunately, creating physical prototypes of digital cameras is
prohibitively expensive, so it doesn't happen.

Prototyping software, which is , is a much
easler proposition. 0 recently pointed out a great paper,
, which makes a

strong case for frequent observational A/B usability tests:

“Greg Linden at Amazon created a prototype to show personalized
recommendations based on items in a shopping cart. You add an item,
recommendations show up; add another item, different recommendations
show up. Linden notes that while the prototype looked promising, a
marketing senior vice-president was dead set against it, claiming it would
distract people from checking out. Greg was forbidden to work on this any
further. Nonetheless, Greg ran a controlled experiment, and the feature won
by such a wide margin that not having it live was costing Amazon a
noticeable chunk of change. With new urgency, shopping cart
recommendations launched. Since then, multiple sites have copied cart
recommendations.

“The culture of experimentation at Amazon, where data trumps intuition,
and a system that made running experiments easy, allowed Amazon to
innovate quickly and effectively.”

Why ask users if they'd like recommendations in their shopping carts when
you can simply deploy the feature to half your users, then observe what

happens? Web sites are particularly amenable to this kind of observational
testing, because it's easy to collect the user action data on the server as a
series of HTTP requests. You don't even have to be physically present to
"observe" users this way. However, you can perform the same kind of data
analysis, with a little care, even if you're deploying a traditional desktop
application. Jensen Harris

“Suppose you wanted to know what [Office 2000] features people use the
most. Well, you start by asking a ‘guru’ who has worked in the product for a
long time. ‘Everyone uses AutoText a lot,” the guru says. The louder the
‘experts’ are, the more their opinions count. Then you move on to the
anecdotal evidence: ‘I was home over Christmas, and I saw my mom using
Normal View... that's probably what most beginners use.” And mix in
advice from the helpful expert: ‘most people run multi-monitor, I heard that
from the guy at Best Buy.’

“SQM, which stands for ‘Service Quality Monitoring’ is our internal name
for what became known externally as the
Im . It works like this: Office 2003 users have the
opportunity to opt-in to the program. From these people, we collect
anonymous, non-traceable data points detailing how the software is used and
and on what kind of hardware. (Of course, no personally identifiable data is
collected whatsoever.)

“As designers, we define data points we're interested in learning about and
the software is instrumented to collect that data. All of the incoming data is
then aggregated together on a huge server where people like me use it to
help drive decisions.

“What kind of data do we collect? We know everything from the frequency
of which commands are used to the number of Outlook mail folders you
have. We know which keyboard shortcuts you use. We know how much time
you spend in the Calendar, and we know if you customize your toolbars. In
short, we collect anything we think might be interesting and useful as long as
it doesn't compromise a user's privacy.”

This may sound eerily like Big Brother, but the SQM merely extends the
same level of reporting enjoyed in every single web application ever created
to desktop applications.

The true power of this data is that you can remotely, silently, automatically
"observe" what users actually do in your software. Now you can answer
questions like

The answer may surprise you. Do you know what the top five most
frequently used functions in your application are?

Don't get me wrong. I love users. Some of my best friends are users. But like
all of us humans, they're unreliable at best. In order to move beyond
usability guesswork, there's no substitute for observing customers using
your product. Wouldn't it be liberating to be able to make design decisions
based on the way your customers actually use your software, rather than the
way they tell you they use it? Or the way you think they use it? Whether
you're observing users in , or collecting user action data
so you can observe users virtually, the goal is the same: don't ask—observe.

OceanofPDE.com

Are Features the Enemy?

Mark Minasi is , and he's not going to take it any more. In his
online book ,, he examines in great detail the
paradox I struggled with yesterday—new features are used to sell software,
but they're also the primary reason that software s

“If a computer magazine publishes a roundup of word processors, the
central piece of that article will be the "feature matrix," a table showing
what word processing programs have which features. With just a glance, the
reader can quickly see which word processors have the richest sets of
features, and which have the least features. You can see an imaginary
example in the following table:”

MyWord BugWord SmartWords

2.1 2.0 3.0
Can boldface text X X
Runs on the Atari 520 X
Automatically indents first line of a X
paragraph
Includes game for practicing touch typing X X
Lets you design your own characters X X
Generates document tables of contents X
Can do rotating 3D bullet points in color X X
Can do bulleted lists X
Supports Cyrillic symbol set X
Includes Malaysian translater X X

“It looks like BugWord 2.0 is the clear value—there are lots more
checkboxes in its column. However, a closer look reveals that it lacks some
very basic and useful word processing features, which MyWord 2.1 has. But

the easy-to-interpret visual nature of a feature matrix seems to mean that the
magazine's message is: Features are good, and the more the better. As
Internet Week senior executive editor Wayne Rash, a veteran of the
computer press, says, "Look at something like PC Magazine, you'll see this
huge comparison chart. Every conceivable feature any product could ever
do shows up, and if a package has that particular feature, then there's a little
black dot next to that product. What companies want is to have all the little
black dots filled in because it makes their software look better."

Mark maintains that software companies give bugs in their existing
software a low priority, while developing new features for the next version
is considered critically important. As a result, quality suffers. He trots out
this Bill Gates quote as a prime example:

“There are no significant bugs in our released software that any significant
number of users want fixed... The reason we come up with new versions is
not to fix bugs. It's absolutely not. It's the stupidest reason to buy a new
version I ever heard... And so, in no sense, is stability a reason to move to a
new version. It's never a reason.”

It's hard to argue with the logic. Customers will pay for new features. But
customers will never pay companies to fix bugs in their software.
Unscrupulous software companies can exploit this by fixing bugs in the
next version, which just so happens to be jam packed full of exciting new
features that will induce customers to upgrade.

Unlike Mark, I'm not so worried about bugs. All software has bugs, and if
you accrue enough of them, your users will eventually revolt. Yes, the
financial incentives for fixing bugs are weak, but the market seems to work
properly when faced with buggy software.

A much deeper concern, for me, is the subtle, creeping feature-itis that
destroys my favorite software. It's the worst kind of affliction—a
degenerative disease that sets in over time. As I've regrettably discovered in
many, many years of using software, adding more features rarely results in
better software. The commercial software market, insofar as it forces
vendors to engage in bullet point product feature one-upsmanship, could be
actively harming the very users it is trying to satisfy.

And the worst part, the absolute worst part, is that customers are complicit
in the disease, too. Customers ask for those new features. And customers
will use the dreaded "feature matrix" as a basis for comparing what
applications they'll buy. Little do they know that they're slowly killing the
very software that they love.

Today, as I was starting up WinAmp, I was blasted by this upgrade dialog:

WINAMP UPDATE

WINAMP 5.5

Mow Available!

Download the 10tk Anniversary Edition now and enjoy
rary new Features, including the new "Bento” single

zkim, multiple language suppart, Albun Ark, updated
plavlisting, multi-channe! MP3 surround, MP3 blog
integration, remote access, and more!

Do I care about any of these new features? No, not really. Album art sounds
interesting, but the rest are completely useless to me. I don't have to
upgrade, of course, and there's nothing forcing me to upgrade. Yet. My
concern here isn't for myself, however. It's for WinAmp. For every new all-
singing, all-dancing feature, WinAmp becomes progressively slower, even
larger, and more complicated. Add enough well-intentioned "features," and
eventually WinAmp will destroy itself.

Sometimes, I wonder if the current commercial software model is
doomed. The neverending feature treadmill it puts us on almost always
results in extinction. Either the application eventually becomes so bloated
and ineffective that smaller, nimbler competitors replace it, or the
application slowly implodes under its own weight. In either case, nothing is
truly fixed; the cycle starts anew. Something always has to give in the
current model. Precious few commercial software packages are still around
after 10 years, and most of the ones that are feel like dinosaurs.

Perhaps we should stop blindly measuring software as a bundle of
features, as some kind of endless, digital all-you-can eat buffet. Instead, we
could measure software by results—how productive or effective it makes us
at whatever task we're doing. Of course, measuring productivity and results
is hard, whereas counting bullets on a giant feature matrix is brainlessly
easy. Maybe that's exactly the kind of cop-out that got us where we are
today.

OceanofPDEF.com

The Organism Will Do Whatever It
Damn Well Pleases

In the go-go world of software development, we're so consumed with
learning_new things, so fascinated with the procession of shiny new
objects that I think we sometimes lose sight of our history. I don't mean the
big era-defining successes. Everyone knows those stories. I'm talking about
the things we've tried before that... didn't quite work out. The failures. The
also-rans. The noble experiments. The crazy plans.

I'm all for reinventing the wheel, because it's one of the best ways to learn.
But you shouldn't even think about reinventing a damn thing until you've
exhaustively researched every single last wheel, old or new, working or
broken, that you can lay your hands on. Do your homework.

That's why I love unearthing stories like The [.essons of Lucasfilm's Habitat.
It's basically World of Warcraft... in 1985.

“Habitat is ‘a multi-participant online virtual environment,” a cyberspace.”

e day for a quest!

“Each participant (‘player’) uses a home computer (Commodore 64) as an
intelligent, interactive client, communicating via modem and telephone over
a commercial packet-switching network to a centralized, mainframe host
system. The client software provides the user interface, generating a real-
time animated display of what is going on and translating input from the
player into messages to the host. The host maintains the system's world
model enforcing the rules and keeping each player's client informed about
the constantly changing state of the universe.”

This was the dark ages of home computing. In 1985, that 64k of memory in
a Commodore 64 was a lot. The entirety of Turbo Pascal 3.02 for DOS,
released a year later in 1986,

The very concept of a multiplayer virtual world of any kind—something we
take for granted today, since every modern website is essentially a
multiplayer game now—was incredibly exotic. Look at the painstaking
explanation Lucasfilm had to produce to even get folks to understand what
the heck Habitat was, and how it worked:

The technical information in is
incredibly dated, as you'd expect, and barely useful even as trivia. But the
sociological lessons of Habitat cut to the bone. They're as fresh today as they
were in 1985. Computers have radically changed in the intervening 27 years,
whereas people's behavior hasn't. At all. This particular passage hit home:

“Again and again we found that activities based on often unconscious
assumptions about player behavior had completely unexpected outcomes
(when they were not simply outright failures). It was clear that we were not
in control. The more people we involved in something, the less in control we
were. We could influence things, we could set up interesting situations, we
could provide opportunities for things to happen, but we could not predict
nor dictate the outcome. Social engineering is, at best, an inexact science,
even in proto-cyberspaces. Or, as some wag once said, ‘in the most carefully
constructed experiment under the most carefully controlled conditions, the
organism will do whatever it damn well pleases.’”

Even more specifically:

“Propelled by these experiences, we shifted into a style of operations in
which we let the players themselves drive the direction of the design. This

proved far more effective. Instead of trying to push the community in the
direction we thought it should go, an exercise rather like herding mice, we
tried to observe what people were doing and aid them in it. We became
facilitators as much as designers and implementors. This often meant adding
new features and new regions to the system at a frantic pace, but almost all
of what we added was used and appreciated, since it was well matched to
people's needs and desires. As the experts on how the system worked, we
could often suggest new activities for people to try or ways of doing things
that people might not have thought of. In this way we were able to have
considerable influence on the system's development in spite of the fact that
we didn't really hold the steering wheel—more influence, in fact, than we
had had when we were operating under the delusion that we controlled
everything.”

That's exactly what I was trying to say in
. Unfortunately, because I hadnt read
this essay until a few months ago, I figured this important lesson out 25
years later than Randy Farmer and Chip Morningstar. So many Stack
Overflow features were the direct result of observing what the community
was doing, then attempting to aid them in it:

e We noticed early in the Stack Overflow beta that users desperately
wanted to reply to each other, and were cluttering up the system with
"answers" that were, well, not answers to the question. Rather than
chastise them for doing it wrong—stupid users!—we added the
commenting system to give them a method of annotating answers and
questions for clarifications, updates, and improvements.

e [didn't think it was necessary to have a place to discuss Stack
Overflow. And I was... kind of a jerk about it. The community was on
the verge of creating a phpBB forum instance to discuss Stack
Overflow. Faced with a nuclear ultimatum, I relented, and you know
what? ot. And I was wrong.

e The community came up with an interesting convention for

, by manually editing a blockquote into the top of
the question with a link to the authoritative question that it was a
duplicate of. This little user editing convention eventually became the
template for the official implementation.

I could go on and on, but I won't bore you. I'd say for every 3 features we
introduced on Stack Overflow, at least two of them came more or less
directly from observing the community, then trying to run alongside them,
building tools that helped them do what they wanted to do with less fuss
and effort. That was my job for the last four years. And I loved it, until I
had to

, one of the primary designers of Habitat at Lucasfilm, went
on to work on a bunch of things that you may recognize: with las

on JSON, The Sims Online, Second Life, Yahoo 360°, Yahoo
Answers, Answers.com, and so forth. He eventually condensed some of his
experience into a book, , which I bought
in April 2011 as a Kindle edition. I didn't know who Mr. Farmer was at this
time. I just saw a new O'Reilly book on an area of interest, and I thought I'd
check it out.

Building

Reputatio

Systems

F Ranelall Farmer

O'REILLY" | "'¥aHOO! PRESS & Bryce Glass

As the co-founder of Stack Overflow, I know a thing or two about web
reputation systems! Out of curiosity, I looked up the author on my own site.
And [found him, with a tiny reputation. So I sent this friendly jibe on
Twitter:

Jeff Atwood codinghorrol 11 Apr 11
pff, look at "‘frandailfarmer s tiny rep! LOOK AT IT!
,\ http://goo.gl/Gjvrn http://buildingreputation.com/

A F. Randall Farmer @frandalifarmer 11 Apr 11
i @codinghorror lol! Reputation context is everyihlng' Surprise!
rpg.stackexchange.com/users/810/f-ra..

® Hide conversation 4 Reply 13 Retweet W Favorite

3: VEETS ?--'..'i:'.-'-l"? % m ‘ H u

But the last laugh was on Randy, as it should be, because I didn't realize he
had over §,000 reputation on rpg.stackexchange.com. Turns out, Randy
Farmer was already an avid Stack Exchange user. And, as you might guess
given his background, a rather expert Stack Exchange user at that. The Stack
Exchange ruleset is complex, strict, and requires discipline to understand.
Kind of like.. maybe a certain role playing game, if you will.

Randy is the sort of dad who had his first edition Dungeons & Dragons
books bound into a single leather tome and handed it down to his son as a
family heirloom. How awesome is that?

If we've learned anything in the last 25 years since Habitat, it is that people
are the source of, and solution to, all the problems you'll run into when
building social software. Are you looking to (dungeon) master the art of
guiding and nudging your online community through their collective
adventure, without violating the continuity of your own little universe? If so,
you could do a whole heck of lot worse than reading
and following on Twitter.

OceanofPDF.com

For a Bit of Colored Ribbon

For the last year or so, I've been getting these two page energy assessment
reports in the mail from Pacific Gas & Electric, our California utility
company, comparing our household's energy use to those of the houses
around us.

Here's the relevant excerpts from the latest report; click through for a full-
page view of each page.

Last 2 Months Household Comparison | You used 33% MORE energy than similar homes.

How you're doing:

Efficient Similar Homes

658° You used more

i e P T e L | than average
Turn over for ways to save

* This energy index combines electricity (KWh) and natural gas (therms) into a single measurement.

M Similar Homes: Approximately 100 ccoupied Efficient Similar Homes: Tha
nearty homes that are similar in size to yours mast efficient 20 percent of similar
{avg 1,196 sq ft) and have gas heat homeas
¥ Electricity | 37% more electricity than similar homes) Natural Gas | 46% more natural gas than similar homes

Tale] « P01 RO1E- < 2011 2012 =

100

KWW

Therms

SEP DOT NOV DEC JAN FEB MAR APR MAY JN- JL AUG SEP OGT MOV DEC JAN FEB MAR APR MAY AN JL AUG

Key: B Your Boma W Similar Homes Efficient Similar Homes

These poor results are particularly galling because I go far out of my way to
Energy Star all the things, I use LED light bulbs just about everywhere, we
set our thermostat appropriately, and we're still getting crushed. I have no
particular reason to care about this stupid energy assessment report showing

our household using 33 percent more energy than similar homes in our
neighborhood. And yet... I must win this contest. I can't let it go.

e Installed a

e [made sure every last bulb in our house that gets any significant use is
LED. Fortunately there are some pretty decent |

offering serviceable 60 watt equivalents at 9 watt, without

too many early adopter LED quirks (color, dimming, size, weight, etc).

e [even put ap in our refrigerator and freezer.

e Switched to a

e Upgraded to a high efficiency tankless water heater, the

e Nearly killed myself trying to source LED candelabra bulbs for the
fixture in our dining room which has 18 of the damn things, and is used
quite a bit now with in the house. Turns out, 18 times any
number ... is still kind of a large number. In cash.

(Most of this has not helped much on the report. The jury is still out on the
Nest thermostat and the candelabra LED bulbs, as I haven't had them long
enough to judge. I'm gonna)

I'm ashamed to admit that it's only recently I realized that this technique—
showing a set of metrics alongside your peers—is exactly the same thing we
built at Stack Overflow and e. Notice any resemblance on the
user profile page here?

2,478 Answers =
173 Should | use 1= or == for not equal in TSQL?

'INSERT IGNORE” vs “INSERT . ON DUPLICATE KEY UPD
165 Feteh the row which has the Max value for a colurmr

m Whal's the ddference between identifying and nen-identifying re

How do the Proxy, Decorator, Adaptor, and Bridge Fatterns diff

12 Questions [ves |

Why is debugging better in an IDE?

m Tools for Generating Mock Diata?

m Emulate MySCL LIMIT clause in Microsoft SCL Server 2000
Dump Ojango ste to siatic HTML?T [closed]

Pythonic
Waw maofg

equivatent of unshift or redo

9 Accounts

& Stack Overfliow 120,280 rep
1 Programmers 1,281 rep
& Meta Stack Overfion 661 rep

B Dalabase Aominstralors 648 rep

& Home Improvemeant 271 rep

120,780 Reputation

top 0.05% averad

+10 Zend DB Framework examine query far an update
#+10 make an D in @ mysgi tabke auto_increment (after the fach)

+10 What Is the most efficient/elegant way to parse a fist table into.a t

+10 What's the difference between identifying and non-identfying rel

vid apa

1,036 Tags
4k mpsa| x 1196

I =al| x 753

2K :; x 626

1k _‘:Elszaj)_; x 303

5 St 112

maore

93 Badges

* Popular Question JESRlV

* Nice Question RN

& Enlightened U]

872 zenadframework| x §32
840 grestestrpergroup| * 83
507 query ®* 123

454 cogi-serier| x 132

354 join| » BO

= Yearhing JEIES

» Good Answer JEgER]

You've tricked me into becoming obsessed with understanding and reducing
my household energy consumption. Something that not only benefits me, but
also benefits the greater community and, more broadly, benefits the entire
world. You've beaten me at my own game. Well played, Pacific Gas and

Electric. Well played.

"_* @m ng{itc_:l___(_:t:rpeland
@codinghorror @simucal used to work at
the company that sends those.The reports
reduce consumption continuously over
several years. It works

4 Reply T3 Retweet W Favorite

This peer motivation stuff, , really works.
That's why we do it. But these systems are like firearms: so powerful they're
kind of dangerous if you don't know what you're doing. If you don't think
deeply about what you're incentivizing, why you're incentivizing it, and the
full ramifications of all emergent behaviors in your system, you may end up
with... something darker.

“The key lesson for me is that our members became very thoroughly
obsessed with those numbers. Even though points on Consumating were
redeemable for absolutely nothing, not even a gold star, our members had an
unquenchable desire for them. What we saw as our membership scrabbled
over valueless points was that there didn't actually need to be any sort of
material reward other than the points themselves. We didn't need to allow
them to trade the points in for benefits, virtual or otherwise. It was enough of
a reward for most people just to see their points wobble upwards. If only we
had been able to channel that obsession towards something with actual
value!”

Since e, I've had a difficult time explaining what exactly
it is I do, if anything, to people. I finally settled on this: what I do, what I'm
best at, what I love to do more than anything else in the world, is design
massively multiplayer games for people who like to type paragraphs to
each other. I channel their obsessions—and mine—into something positive,

something that they can learn from, something that creates wonderful
reusable artifacts for the whole world. And that's what I still hope to do,

because I have an endless well of obsession left.
Just ask PG and E.
OceanofPDF.com

Building Social Software for the Anti-
Social

In November, I delivered the keynote presentation at 2011. It was
the second and probably final presentation in the series I call Building
Social Software for the Anti-Social.

I've spent almost four years thinking about the Q&A format, and these two
presentations are the culmination of that line of thought. In them I present
ten "scary ideas," ideas which are counterintuitive for most folks. These are
the building blocks we used to construct Stack Overflow, and by extension,
Server Fault, Super User, and the rest of the

. Radically lower the bar for participation.

. Trusting (some of) your users.

. Life is the world’s biggest MMORPG.

. Bad stuff happens.

. Love trumps money.

. Rules can be fun and social.

. All modern website design is game design.

. Thoughtful game design creates sustainable communities.

O o0 N O Ul A WD R

. The community isn’t always right.

—_
o

. Some moderation required.

It's not the same experience as attending the actual live presentation, of
course, but you can certainly get the gist of it by viewing the slides for these
two presentations online:

A\

—

|=| stackoverflow

Social software for the anti-social

(programmers)

Building Social Software for the
Anti-Social

Part I

Jeff Atwood

stackexchange.com

The Oredev organizers hired [mageThink to draw each presentation on a
whiteboard live on stage as it was presented. I was skeptical that this would

work, but the whiteboard visualizations came out great for all the
presentations. Here's the two whiteboard drawings ImageThink created
during my presentation. (Yes, they had two artists on stage "live
whiteboarding," one on the left side, and one on the right side.)

W o ”
fg:' = "’I’;'EEc.mE“'fE ;w - .
£ P

,P,
M

u e x g - ‘:‘r | s
LREDEV — iveses 7.0, 001 "~%H*-f'ﬂ’:‘:' of

LR LR]

0 Slm‘% @m "um..mL SoHware
~ e fﬂ'p_ the HNH coval o
W ARb EMERTAELE i3
W I DU MALHINE S i rz-; CARE

#
" il
ir-'
Heaty

H‘

?P-'F“ A B Mt

Mﬁ"ﬁ

mﬁ’ [1

‘{wf“Lh IATHTAION R AT j? e psk STURF
\. THeY “m"‘ i / I".(R T

Nﬂ'lluu‘ =% ~j7 INtE

J-' W WA s PetLe. B0
\ ,,351 nﬁuﬂ‘ﬁm P

,I!ILLLHUW w;ln

- ‘%
I i rnh-r "54""
e, WO [- -

KHES
uhll- ""-!IE

(¥

2k
1 BFTER WE
g;“wi Just TR IRl

EHEEEV Z‘? savereg 2m 711 1071 . " _L!"\II'I'T,::F"F"“I :_..

It's not a bad approximation of what was covered. If you're curious about
live whiteboard visualizations, ImageThink posted a_great set of links on
their blog that T highly recommend.

After four years, we've mostly figured out what works and what doesn't
work for our particular brand of low noise, high signal Q and A at Stack
Exchange. But the title Social Software for the Anti-Social is only
partially tongue in cheek. If you want to learn anything online, you have to
design your software to refocus and redirect people's natural social group
impulses, and that's what these presentations attempt to explain. I hope you
enjoy them!

Update: Part II is now available as a full talk, with audio and video courtesy
of Oredev. Watch it now!

Become a Hyperink reader. Get a special surprise.

Like the book? Support our author and leave a comment!

OceanofPDF.com

VI

Causes We Should Care About

OceanofPDEF.com

Preserving the Internet... And
Everything Else

In Preserving_Our Digital Pre-History I nominated Jason Scott to be our

generation's digital historian in residence. It looks like a few people must
have agreed with me, because in March 2011, he officially became an
archivist at the Internet Archive.

Jason recently invited me to visit the [nternet Archive office in nearby San
Francisco. The building alone is amazing; when you imagine the place
where they store the entire freaking Internet, this enormous former Christian
Science church seems... well, about right.

It's got a built in evangelical aura of mission, with new and old computer
equipment strewn like religious totems throughout.

Doesn't it look a bit like the place where we worship servers, with Jason
Scott presiding over the invisible, omnipresent online flock? It's all that and
so much more. Maybe the religious context is appropriate, because I always
thought the Internet Archive's mission—to create a permanent copy of
every Internet page ever created, as it existed at the time—was audacious
bordering on impossible. You'd need to be a true believer to even consider
the possibility.

The Internet Archive is about the only ally we have in the fight against
pernicious and pervasive linkrot all over the Internet. When I go back and
review old Coding Horror blog entries I wrote in 2007, it's astonishing just
how many of the links in those posts are now, after five years, gone. I've lost
count of all the times I've used the Wayback Machine to retrieve historical
Internet pages I once linked to that are now permanently offline—pages that
would have otherwise been lost forever.

“The Internet Archive is a service so essential that its founding is bound to
be looked back on with the fondness and respect that people now have for
the public libraries seeded by Andrew Carnegie a century ago... Digitized
information, especially on the Internet, has such rapid turnover these days
that total loss is the norm. Civilization is developing severe amnesia as a
result; indeed it may have become too amnesiac already to notice the
problem properly. The Internet Archive is the beginning of a cure—the
beginning of complete, detailed, accessible, searchable memory for society,
and not just scholars this time, but everyone.”—

Without the Internet Archive, the Internet would have no memory. As the
)s 1 cannot emphasize enough how
significant the Internet Archive is to the world, to any average citizen of the
Internet who needs to source an old hyperlink. Yes, maybe it is just the
world's largest and most open hard drive, but nobody else is doing this
important work that I know of.

Let's Archive Atoms, Too

While what I wrote above is in no way untrue, it is only a small part of the
Internet Archive's mission today. Where I always thought of the Internet
Archive as, well, an archive of the bits on the Internet, they have long since
broadened the scope of their efforts to include stuff made of filthy, dirty,
nasty atoms. Stuff that was never on the Internet in the first place.

The Internet Archive isn't merely archiving the Internet any more, they are
attempting to archive everything.

e O —one web page for every book ever published.

. —every live concert ever recorded, free for non-
commercial use.

e Ph —one physical copy of every book ever published.

. —every free movie, film, or video ever
recorded.

. —with 1.6 million scanned books already online, and a

thousand more

All of this, in addition to boring mundane stuff like taking snapshots of the
entire Internet every so often. That's going to take, uh... a lot of hard drives.
I snapped a picture of a giant pile of 3 TB drives waiting to be installed in
one of the storage rooms.

The Internet Archive is a big organization now, with 30 employees in the
main San Francisco office you're seeing above, and 200 staff all over the
world. With a mission of such overwhelming scope and scale, they're going
to need all the help they can get.

The Internet Archive Needs You

The Internet Archive is a non-profit organization, so you could certainly
donate money. If your company does charitable donations and cares at all
about the Internet, or free online access to human knowledge, I'd strongly

encourage them to donate to the Internet Archive as well. I made sure that
Stack Exchange every year.

But more than money, what the Internet Archive needs these days is ... your
stuff. I'll let Jason explain exactly what he's looking for:

“I'm trying to acquire as much in the way of obscure video, obscure
magazines, unusual pamphlets and printed items of a computer nature or
even of things like sci-fi, zines—anything that wouldn't normally find itself
inside most libraries. Hence m —tens of
thousands of issues in there. I'd love to get my hands on more.

Also as mentioned, I love, love, love shareware CDs. Those are the most
bang for the buck with regards to data and history that I want to get my
hands on.”

Being the obsessive conscientious geeks that I know you are, I bet you have
a collection of geeky stuff exactly like that somewhere in your home. If so,
the best way you can help is to send it in as a contribution! Email
jscott@archive.org about what you have, and if you're worried about
rejection, don't be:

“There's seriously nothing we don't want. I don't question. I take it in, I put it
in items. I am voracious. Omnivorous. I don't say no.”

The Internet Archive has an impossible mission on an immense scale. It is an
unprecedented kind of open source archiving, not driven by Google or
Microsoft or some other commercial entity with ulterior motives, but a non-
profit organization motivated by nothing more than the obvious common
good of building a massive digital to preserve our
history for future generations. Let's do our part to help sup
in whatever way we can.

OceanofPDFE.com

The Importance of Net Neutrality

Although I remain , I am ashamed to
admit that I never fully understood the importance of net neutrality
until last week. Mr. Lessig

“At the center of the debate is the most important public policy you've
probably never heard of: ‘network neutrality.” Net neutrality means simply
that all like Internet content must be treated alike and move at the same
speed over the network. The owners of the Internet's wires cannot
discriminate. This is the simple but brilliant ‘end-to-end’ design of the
Internet that has made it such a powerful force for economic and social
good: All of the intelligence and control is held by producers and users, not
the networks that connect them.”

Fortunately, the good guys are winning. Recent legal challenges to network
neutrality have been defeated, . I remember hearing
about these legal decisions at the time, but I glossed over them because I
thought they were fundamentally about file sharing and BitTorrent. Not to
sound dismissive, but someone's legal right to download a complete video
archive of Firefly wasn't exactly keeping me up at night.

But network neutrality is about far more than file sharing bandwidth. To
understand what's at stake, study the sordid history of the world's
communication networks—starting with the telegraph, radio, telephone,
television, and onward. Without historical context, it's impossible to
appreciate how scarily easy it is for e to get subverted and
undermined by corporations and government in subtle (and sometimes not
so subtle) ways, with terrible long-term consequences for society.

That's the genius of Tim Wu's book “

)

THE
MASTER

W GH

TIM WU

One of the most fascinating stories in the book is that of Harry Tuttle and
AT&T.

“Harry Tuttle was, for most of his life, president of the Hush-a-Phone
Corporation, manufacturer of the telephone silencer. Apart from Tuttle,
Hush-a-Phone employed his secretary. The two of them worked alone out
of a small office near Union Square in New York City. Hush-a-Phone's
signature product was shaped like a scoop, and it fit around the speaking
end of a receiver, so that no one could hear what the user was saying on the
telephone. The company motto emblazoned on its letterhead stated the
promise succinctly: ‘Makes your phone private as a booth.’

“If the Hush-a-Phone never became a household necessity, Tuttle did a
decent business, and by 1950 he would claim to have sold 125,000 units.
But one day late in the 1940s, Henry Tuttle received alarming news. AT&T
had launched a crackdown on the Hush-a-Phone and similar products, like
the Jordaphone, a creaky precursor of the modern speakerphone, whose
manufacturer had likewise been put on notice. Bell repairmen began
warning customers that Hush-a-Phone use was a violation of a federal tariff
and that, failing to cease and desist, they risked termination of their
telephone service.

“Was AT&T merely blowing smoke? Not at all: the company was referring
to a special rule that was part of their covenant with the federal government.
It stated: ‘No equipment, apparatus, circuit or device not furnished by the
telephone company shall be attached to or connected with the facilities
furnished by the telephone company, whether physically, by induction, or
otherwise.’

“Tuttle hired an attorney, who petitioned the FCC for a modification of the
rule and an injunction against AT&T's threats. In 1950 the FCC decided to
hold a trial (officially a ‘public hearing’) in Washington, D.C., to consider
whether AT&T, the nation's regulated monopolist, could punish its
customers for placing a plastic cup over their telephone mouthpiece.

“The story of the Hush-a-Phone and its struggle with AT&T, for all its
absurdist undertones, offers a window on the mindset of the monopoly at its
height, as well as a picture of the challenges facing even the least
innovative innovator at that moment.”

Absurdist, indeed—Harry Tuttle is also not-so-coincidentally the name of a
character in the movie Brazil, one who attempts to work as a renegade,
outside oppressive centralized government systems. Often at great peril to
his own life and, well, that of anyone who happens to be nearby, too.

But the story of Harry Tuttle isn't just a cautionary tale about the dangers of
large communication monopolies. Guess who was on Harry Tuttle's side in
his

)0ly? No less than an acoustics professor by the_ name of Leo
Beranek, and an expert witness by the name of J.C.R. Licklider.

If you don't recognize those names, you should. went on to
propose and design ARPANET, and became one of the B's in
, who helped build ARPANET. In other words,
these gentlemen went on from battling the Bell monopoly in court in the
1950s to designing a system in 1968 that would ultimately defeat it: the
internet.

The internet is radically unlike all the telecommunications networks that
have preceded it. It's the first national and global communication network
designed from the outset to resist mechanisms for centralized control and
monopoly. But resistance is not necessarily enough;

makes a compelling case that, historically speaking, all
communication networks start out open and then rapidly swing closed as
they are increasingly commercialized.

“Just as our addiction to the benefits of the internal combustion engine led
us to such demand for fossil fuels as we could no longer support, so, too,
has our dependence on our mobile smart phones, touchpads, laptops, and
other devices delivered us to a moment when our demand for bandwidth—
the new black gold—is insatiable. Let us, then, not fail to protect ourselves
from the will of those who might seek domination of those resources we
cannot do without. If we do not take this moment to secure our sovereignty
over the choices that our information age has allowed us to enjoy, we
cannot reasonably blame its loss on those who are free to enrich themselves
by taking it from us in a manner history has foretold.”

It's up to us to be vigilant in protecting the concepts of common carriage
and network neutrality on the internet. Even devices that you may love, like
an iPad, Kindle, or Xbox, can easily be turned against you—if you let them.

OceanofPDE.com

Youtube vs. Fair Use

In , I described my love-hate relationship
with YouTube, at least as it existed in way back in the dark ages of 2007.

“Now think back through all the videos you've watched on YouTube. How
many of them contained any original content?

“It's perhaps the ultimate case of cognitive dissonance: by YouTube's own
rules [which prohibit copyrighted content], YouTube cannot exist. And yet
it does.

“How do we reconcile YouTube's official hard-line position on copyright
with the reality that 90 percent of the content on their site is clearly
copyrighted and clearly used without permission? It seems YouTube has an
awfully convenient "don't ask, don't tell" policy—they make no effort to
verify that the uploaded content is either original content or fair use. The
copyrighted content stays up until the copyright owner complains. Then,
and only then, is it removed.”

Today's lesson, then, is be careful what you ask for.

At the time, I just assumed that YouTube would never be able to resolve
this problem through technology. The idea that you could somehow
fingerprint every user-created uploaded video against every piece of
copyrighted video ever created was so laughable to me that I wrote it off as
impossible.

I uploaded a small clip from the movie ” to YouTube, in
order to use it in a blog entry. This is quintessential fair use: a tiny excerpt
of the movie, presented in the context of a larger blog entry. So far, so good.

But then I uploaded a small clip from a different movie that I'm planning to
use in another, future blog entry. Within an hour of uploading it, I received
this email:

Dear {username},

Your video, {title}, may have content that is owned or licensed by
{company}.

No action is required on your part; however, if you are interested in learning
how this affects your video, please visit
for more information.

Sincerely,
-The YouTube Team

This 90 second clip is from a recent movie. Not a hugely popular movie,
mind you, but a movie you've probably heard of. This email both fascinated
and horrified me. How did they match a random, weirdly cropped
(thanks, Windows Movie Maker) clip from the middle of a non-
blockbuster movie within an hour of me uploading it? This had to be some
kind of automated process that checks uploaded user content against every
piece of copyrighted content ever created (or the top n subset thereof),
exactly the kind that I thought was impossible.

Uh oh.

I began to do some research. I quickly found
, which doesn't cover video, but it's definitely related:

I was caught by surprise one day when I received an automated email from
YouTube informing me that my video had a music rights issue and it was
removed from the site. I didn't really care.

Then a car commercial parody I made (arguably one of my better videos)
was taken down because I used an unlicensed song. That pissed me off. I
couldn't easily go back and re-edit the video to remove the song, as the
source media had long since been archived in a shoebox somewhere. And I
couldn't simply re-upload the video, as it got identified and taken down
every time. I needed to find a way to outsmart the fingerprinter. [was angry
and I had a lot of free time. Not a good combination.

I racked my brain trying to think of every possible audio manipulation that
might get by the fingerprinter. I came up with an almost-scientific method
for testing each modification, and I got to work.

Further research led me to this brief TED talk,

“We compare each upload against all the reference files in our database.
This heat map is going to show you how the brain of this system works.”

“Here we can see the reference file being compared to the user generated
content. The system compares every moment of one to the other to see if
there's a match. This means we can identify a match even if the copy uses
just a portion of the original file, plays it in slow motion, and has degraded
audio or video.

“The scale and speed of this system is truly breathtaking—we're not just
talking about a few videos, we're talking about over 100 years of video
every day between new uploads and the legacy scans we regularly do across
all of the content on the site. And when we compare those 100 years of
video, we're comparing it against millions of reference files in our database.
It'd be like 36,000 people staring at 36,000 monitors each and every day
without as much as a coffee break.”

I have to admit that I'm astounded by the scope, scale, and sheer
effectiveness of YouTube's new copyright detection system that I thought
was impossible! Seriously, . It's not long. The more I
researched , the more I realized that
resistance is futile. It's so good that the only way to defeat it is by
degrading your audio and video so much that you have effectively ruined it.
And when it comes to copyright violations, if you can achieve mutually
assured destruction, then you have won. Absolutely and unconditionally.

This is an outcome so incredible I am still having trouble believing it. But I
have the automatically blocked uploads to prove it.

Now, I am in no way proposing that copyright is something we should
be trying to defeat or work around. I suppose I was just used to the
status quo on YouTube, and the idea of a video copyright
detection system this effective was completely beyond the pale. My hat is
off to the engineers at Google who came up with this system. They aren't
the bad guys here; they offer some rather sane alternatives when copyright
matches are found:

“If Content ID identifies a match between a user upload and material in the
reference library, it applies the usage policy designated by the content
owner. The usage policy tells the system what to do with the video. Matches
can be to only the audio portion of an upload, the video portion only, or
both.

“There are three usage policies—Block, Track or Monetize. If a rights
owner specifies a Block policy, the video will not be viewable on YouTube.
If the rights owner specifies a Track policy, the video will continue to be
made available on YouTube and the rights owner will receive information
about the video, such as how many views it receives. For a Monetize policy,
the video will continue to be available on YouTube and ads will appear in
conjunction with the video. The policies can be region-specific, so a content
owner can allow a particular piece of material in one country and block the
material in another.”

The particular content provider whose copyright I matched chose the
draconian block policy. That's certainly not Google's fault, but I guess you
could say I'm Feeling Unlucky.

Although the 90 second clip I uploaded is clearly copyrighted content—I
would never dispute that—my intent is not to facilitate illegal use, but to
"quote" the movie scene as part of a larger blog entry. YouTube does
provide recourse for uploaders; they make it easy to file a dispute once the
content is flagged as copyrighted. So I dutifully filled out the dispute form,
indicating that I felt I had a reasonable claim of fair use.

Dispute Claim (Step 1 of 2)

Al fields required.

User Mame: codinghorror
Video |D: F5SH18UzTycQ

Select the reason for your dispute.

1. This video does not feature the third-party copyrighted material at issue. My video was misidentified as containing
this material.

@ 2. This video uses copyrighted material in @ manner that does not require approval ofthe copyright holder. It is a fair
use under copyright law.

Please explain briefly: |90 sec excerptto be used in editorial blog.
(7 3. This video uses the copyrighted material atissue, but with the appropriate autharization from the copyright owner.
Please explain briefly:

Signature

1 Jeff Atwood

Type yvour full name to serve as your electronic signature

Statement of Good Faith

| have a good faith belief that the material was disabled as a result of a mistake or
misidentification, and that | am not intentionally abusing this dispute process. -

Type the following statement into the box above
| have a good faith belief that the material was dizabled as a result of a mistake or misidentification, and that 1 am not intentionally abusing
this dispute process.

| Cancel | | Continue |

Unfortunately, my fair use claim was denied without explanation by the
copyright holder.

Let's consider the four guidelines for fair use I outlined in my_original 2007
blog entry:

1. Is the use transformative?

2. Is the source material intended for the public good?

3. How much was taken?

4. What's the market effect?
While we're clear on 3 and 4, items 1 and 2 are hazy in a mashup. This
would definitely be transformative, and I like to think that I'm writing for

the erudition of myself and others, not merely to entertain people. I
uploaded with the intent of the video being viewed through a blog entry,

with YouTube as the content host only. But it was still 90 seconds of the
movie viewable on YouTube by anyone, context free.

So I'm torn.

On one hand, this is an insanely impressive technological coup. The idea
that YouTube can (with the assistance of the copyright holders) really
validate every minute of uploaded video against every minute of every
major copyrighted work is unfathomable to me. When YouTube promised
to do this to placate copyright owners, I was sure they were delaying for
time. But much to my fair-use-loving dismay, they've actually gone and
built the damn thing—and it works.

Just, maybe, it works a little too well. I'm still looking for video sharing
services that

Become a Hyperink reader. Get a g

Like the book? Support our author and leave a !

OceanofPDEFE.com

VII.

Gaming

OceanofPDF.com

Everything I Needed to Know About
Programming I Learned from BASIC

had to say about Beginner's All Purpose Symbolic
Instruction Code:

“It is practically impossible to teach good programming style to students that
have had prior exposure to BASIC; as potential programmers they are
mentally mutilated beyond hope of regeneration.”

I'm sure he was exaggerating here for effect; as much as I admire his 1972
ser, it's hard to square that humility with the
idea that choosing the wrong programming language will damage the
programmer's mind. Although , the
largest hurdle I see isn't any particular choice of language, but the fact that
e. To quote Pogo, we have

met the enemy, and

Dismissing BASIC does seem rather elitist. Like many programmers of a
certain age, I grew up with BASIC.

I mentioned in the curious collision of early console gaming
and programming that was the e. |
had to see this for myself, so I bought a copy on eBay.

1T raEr LT Theas ERrTe

| il PROHGE ANRTL
WMADE EASY

Keyba ared Conmntrolio

|\

ATARI

I also bought a set of the Atari 2600 kevypad controllers. The overlays come
with the cartridge, and the controllers mate together to make a primitive sort
of keyboard. (Also, if you were wondering what kinds of things I do with my
ad revenue, buying crap like this is a big part of it, sadly.)

d3ls

SOHAYHD LNdLNG STIAVIYA
NOVIS WYMO0Hd SNLYLS
A0S0 L33
WIWWHEOOYd
)IStd

HIISYS HIMOTS

%

T A
IHY MM

=
=
; G
5 s8]
5 & ==
: D h
; 3N
=
—d
&y

Surprisingly, the manual isn't available anywhere online, so [scanned it in
myself. Take a look. It's hilarious. There is a transcribed HTMI, version of
the manual, but it's much less fun to read without the pictures and diagrams.

I booted up a copy of the Basic Programming ROM in the Stella Atari 2600
emulator, then followed along with the manual and wrote a little BASIC

program.

You'll notice that all the other screenshots of Atari 2600 Basic Programming
on the web are essentially blank. That's probably because I'm the only
person crazy enough to actually try programming in this thing. It may
look painful, but you have no idea until you've tried to work with this funky
"IDE." It's hilariously bad. I could barely stop laughing while punching
away at my virtual keypads. But I have to confess, after writing my first
"program," I got that same visceral little thrill of bending the machine to my
will that I've always gotten.

The package I got from eBay included a few handwritten programming
notes that I assume are from the 1980s.

Isn't that what BASIC—even this horribly crippled, elephant man Atari 2600
version of BASIC—is all about? Discovering fundamental programming
concepts?

Of course, if you were at all interested in computers, you wouldn't bother
programming on a dinky Atari 2600. There were much better options for
gamingand programming in the form of home computers. And for the
longest time, every home computer you could buy had BASIC burned
into the ROM. Whether it was the Apple //, Commodore 64, or the Atari
800, you'd boot up to be greeted by a BASIC prompt. It became the native
language of the hobbyist programmer.

FEIHT "HELLO WORLD!"

GOTO 18

18 PRINT ""HELLO WORLL!"®
£28 GOTO 16
RUNNE

Even the IBM PC had , and finally (, which was
phased out with Windows 2000.

It's true that if you wanted to do anything remotely cutting-edge with those
old 8-bit Apple, Commodore and Atari home computers, you had to pretty
much learn assembly language. I don't recall any compiled languages on the
scene until the IBM PC and DOS era, primarily . Compiled
languages were esoteric and expensive until the great democratization of
Turbo Pascal at its low, low price point of $49.99.

As an aside, you may notice that was the primary author of
Turbo Pascal and later Delphi; he's now a and
the chief designer of the C# language. That's a big reason why so many
longtime geeks, such as myself, are so gung-ho about .NET.

Even if you lacked the programming skills to become the next

or ht, there were still a lot of interesting games and
programs you could still write in good old BASIC. Certainly more than
enough to figure out if you enjoyed programming, and if you had any talent.
The were like programming bibles to us.

=V

101 Great Games to Play on Your Home Computer.
By yourself or with others. Each complete with
programming and sample run. Edited by David H. Ahl

[REARANTRERL

For a long, long time, if you were interested in computers at all, you
programmed in BASIC. It was as unavoidable and inevitable as the air you
breathed. Every time you booted up, there was that command prompt
blinking away at you. Why not type in some BASIC commands and see
what happens? And then the sense of wonder, of possibility, of being able to
unlock the infinitely malleable universe inside your computer. Thus the
careers of millions of programmers were launched.

BASIC didn't mutilate the mind, as Dijkstra claimed. If anything, BASIC
opened the minds of millions of young programmers. It was perhaps the
earliest test to determine whether you were a_pro
.goat. Not all will be good, of course, but some inevitably will

Whether we're still programming in it or not, the spirit of BASIC lives on
in all of us.

OceanofPDF.com

Programming Games, Analyzing
Games

For many programmers, our introduction to programming was our dad
forcing us to write our own games. Instead of the shiny new Atari 2600
game console I wanted, I got a Texas Instruments TI-99/4a computer
instead. That's not exactly what I had in mind at the time, of course, but that
fateful decision launched a career that spans thirty years.

Evidently, I'm not alone. Mike Lee

“I was born in 1976, the same year as Apple, so my dad was just the right
age to get into the early results of the home-brew movement. One of my
few memories of early childhood is of him coming home with a Sinclair
2000 and a book of games. He sat there for hours typing in the code for
Space Invaders, and we played it maybe 30 minutes before turning the
machine off and undoing all his work.”

As

“I've been developing software for 25 years, since I was 8, starting with a
book called “Your First BASIC Program’ that my dad bought me because
we had a PC while all my friends were playing StarBlazers on their Apple
ITs. He said if I wanted to play games, then I could write one myself. At the
time I was a bit disappointed (Okay, crushed) but now... well, Dad, thank
you.”

That's why it's so fascinating to retrace the earliest computer games. The
personal computer industry . We learned how to program by
typin le. . Look closely, and
you'll find that those old game programs are the primitive origins of most
programmers, the reptile brain stem we all collectively carry around in our
heads.

Even a humble, simple little pack-in game like Minesweeper has deep

“Minesweeper has its origins in the earliest mainframe games of the '60s
and '70s. Wikipedia cites the earliest ancestor of Minesweeper as David
Ahl's Cube. But although Cube features ‘landmines,’ it's hard to consider
this a predecessor of Minesweeper. In Cube, the mines are placed randomly
and the only way to discover where they ends the game. You walk over a
landmine and you die; you can't avoid the landmines or know where they
are before you take a chance.”

1[1]2]1

i
o

=
- |
3 1|
=
1

1
1

a4 1
4l
3321

113011

“However, there are a number of very early ‘hide and seek’ games about
locating hidden spots on a grid. For example, in Bob Albrecht's Hurkle, you
have to find a creature hiding on a ten-by-ten grid. After each guess, you're
told in what general direction the Hurkle lies. Dana Noftle's Depth
Charge is the same, but in three dimensions. Bud Valenti's Mugwump has
multiple hidden targets, and after each guess, you get the approximate
distance to each of them. Unlike Cube, these games match the general
pattern of Minesweeper more closely: make a random guess to start, then
start using the information provided by that first guess to uncover the
hidden items. Of course, unlike Minesweeper (or Cube), the was no danger
of ‘explosion,’” the only constraint was finding the secret locations in a
limited number of guesses.

i
=
s
s

“The closest ancestor to Minesweeper is probably Gregory Yob's Hunt the
Wumpus.”

FATS MEARETI
TOU ARE LN ROOK £

TIWHELE LEAD TO 1 3 1]
SHOOT OR MOVUE (S5=MITHM
WHERF TOTID o
— E_p'l.':._j -
BATS MWFAFEY L (5 = _-"E S r TS '
YOU BFE I FOOM A0 -\,;-""f-‘.. /‘*} .:I
TUNKELS LEAD TO 2 9 il - = e
(2 = '-:H-..' -
'—-{ A L5
SHOOT OF MOVE {5-K)}TH T '<>_
WHERE ToO711 ﬁax 12) {4
LAF==5SUPER EAT SNATCH| ELSERMEREVILLE FOR ¥OUY e [
L
r iy
¥YOU AFE IN FOOM 14 (o \".T\)
TIBNELS LEAD TO & 13 15 St e 1_.F-='}
SHOOT OF MOUE (S5-M3THM
WHERE TOTLS
(e
'\\.J
)
1 SMFELL A WUHPUST ‘}n-_ _Hl:.-z‘
YOU ARE LN ROOM 15) -
TUNKHELS LEAD TO & 1& 1& d 'hl.h':» Fp_-:_
13 hﬁ& :
BHOOT CF MOVE (S=RITS @wﬁ

Wl. OF AOGEMSEC1-5371L

FOOR #P0R
AHALD YOU BT THFE WUEFUSI
HEE HEE HFE = THE ¥UMPUS"LL GETCHA NEXT TImEDI

245

CeR WAy T Y e

HmE yaTo Tk aveed

bbb M ByndE T L 5
Pabed W o plias U W s T

LA e Yl

“Although it used an unorthodox grid (the original game used the vertices
of a dodecahedron, and a later version used Mbius strips and other unlikely
patterns), the Wumpus evolved from its predecessors in many other ways.”

I was intrigued by the newfound connection between Minesweeper and
Hunt the Wumpus, since the Wumpus is my_power animal.

Most of the early games weren't even that much fun. Analyzing the game's
program was almost as enjoyable as playing it; the very act of typing it in
and understanding the program was "game" enough for many of us. But
some of these early games evolved and survived until today, as
Minesweeper did—and it has become so ingrained into the public
consciousness that it's now the subject of hilarious parody videos. Despite
Minesweeper's simplicity (and popularity), it is also a surprisingly deep
game of logic, as documented in the Wikipedia entry:

e Analysis: single square, double square, shared mine

e NP-Completeness

Minesweeper is still popular with programmers today; , for
example, is a Java program that automatically plays Minesweeper by
reading the screen and manipulating the mouse.

The Minesweeper article is a part of the amazing Be on
GameSetWatch, in which many classic puzzle games are examined from the
vantage point of a game designer and game programmer. I recommend it
highly. Fair warning, though: don't b unless you have plenty of
time on your hands. For a programmer, analyzing games is almost as fun
as playing them.

OceanofPDEF.com

Game Player, Game Programmer

Greg Costikyan's essay “Welcome Comrade!” is a call to arms for hobbyist
game programmers:

X0 &

e

o

“Back in the day, it took a couple of man days to create a Doom level.
Creating a Doom III level took multiple man-weeks. Thus budgets spiral
every upward; as late as 1992, a typical computer game had a budget of
$200,000. Today, 10 million dollars is your bare buy-in for a next
generation title.

“As budgets soar, publishers are increasingly conservative about what they
will fund, because nobody wants to lose 10 million dollars. So they look for
ways to reduce their risk. Today, they have become so risk-averse that
anything other than a franchise title, a game based on a movie license, or a
game that slots easily into a category they know how to sell is unthinkable.

“Today, Myst, Civilization, or Sim City would never get funded.

“We're condemned to more of the same-old same-old from now for all
eternity—unless we figure out a way to break this iron grip—what Raph

Koster calls ¢

‘We think it's possible—by building for the game industry what the
independent film and independent music movements do for their own
industry. Creating a viable ‘independent games’ movement, where people
can experiment, at lower budgets and with less risk, on quirky, offbeat,
innovative games—and find an audience that prizes gameplay over glitz,
innovation over graphical trickery, playfulness over polygons.”

Greg's website aims to make this a reality, by creating an
audience and supporting hobbyist developers.

James Hague's documents
just how profoundly the world has changed for would-be game
programmers in the last 30 years:

“For a small percentage of enthusiasts, there's always been the calling to
jump from just playing games to creating them. It's crazy, of course,
because the rush of playing a great game doesn't carry over to spending
twenty straight hours in the basement trying to figure out why a level
initialization routine fails ten percent of the time. But those that persisted,
they drove the industry in its early days.

“I remember reading about Mark Turmell-—and others whose names I've
forgotten—who were somehow inspired to design their own games, and
then sit down and figure out exactly how to turn them into something their
friends could actually come over and play. Those were fantastic feats that
started the chatter about computer games becoming a new art form. One
person, one vision, and six months later a finished product that was snapped
up by a publisher—pure creation. A new alternative for would-be novelists.

“The dream is still alive in these days of 32-bit processors and 3D
accelerators, but over the years the reality behind it has quietly slipped
away and few have stopped to notice.

“In 1981, personal computers were in the thick of their 8-bit heyday. Not
only are we talking about an 8-bit 6502—a processor with one primary
register and no multiply instruction—running at less than 2 megahertz, but
it was still acceptable, though just barely, to write games in BASIC. Now
don't get me wrong, BASIC was the downtrodden interpreted language that

it still is, but it shipped with every Apple II and Atari 800, and was the
obvious choice for budding programmers.”

Perhaps this is another reason why
shi . Or maybe doing it as-is with the .NET 2.0 command-line
compiler and Notepad is more authentic. For more perspective on how the
game programming world has changed since those early days, I can highly
recommend James Hague's essential 1997 e-book

Perhaps it's a little easier to imagine transitioning from gamer to

programmer in the world of mobile devices. Li is doing just
that—two guys pursuing their dream by building a game company from the
ground up on the PocketPC. They started with , a charming little
There's also Microsoft's intriguing , which is

. It's a way for hobbyist developers to write non-
commercial games that run on the Xbox 360. There have been rumblings
about the best of these non-commercial games eventually making their way
to the Xbox Live marketplace—which could potentially convert those
hobbyist game programmers into small business owners. It's an exciting
prospect, given the huge installed base of most consoles, and the ease of
getting everything running on a standard console platform.

Is the dream of jumping from game player to game programmer still
alive? It's certainly how I got my start in programming.

Become a Hyperink reader. Get a 5

Like the book? Support our author and leave a !

OceanofPDE.com

VIII.

Things to Read

OceanofPDF.com

Programmers Don’t Read Books, But
You Should

One of the central themes of stackoverflow.com is that software developers
no longer learn programming from books, as :

“Programmers seem to have stopped reading books. The market for books
on programming topics is miniscule compared to the number of working
programmers.”

Joel expressed similar sentiments in 2004's

“But the majority of people still don't read. Or write. The majority of
developers don't read books about software development, they don't read
Web sites about software development, they don't even read Slashdot.”

If programmers don't learn from books today, how do they learn to program?
They do it the old-fashioned way: by rolling up their sleeves and writing
code— while harnessing the collective wisdom of the internet in a second
window. The internet has rendered programming books obsolete. It's faster,
more efficient, and just plain smarter to get your programming information
online. I believe Doug McCune's experience, which he aptly describes as
, is fairly typical.

I lay part of the blame squarely at the feet of the technical book publishing
industry:

1. Most programming books suck. The barrier to being a book author,
as near as I can tell, is virtually nonexistent. The signal to noise of book
publishing is arguably not a heck of a lot better than what you'll find on
the wilds of the internet. Of the hundreds of programming books
released every year, perhaps two are three are truly worth the time
investment.

2. Programming books sold by weight, not by volume. There seems to
be an inverse relationship between the size of a programming book and
its quality. The bigger the book, somehow, the less useful information it

will contain. What is the point of these giant wanna-be reference
tomes? How do you find anything in it, much less lift the damn things?

3. Quick-fix programming books oriented towards novices. I have
nothing against novices entering the programming field. But I continue
to believe the "Learn [Insert Language Here] in 24 hours!" variety of
books are . The monomaniacal focus
on right now and the fastest, easiest possible way to do things leads
beginners down the wrong path—or as I like to call it, "PHP." T kid! T
kid!

4. Programming book pornography. The idea that having a pile of
thick, important-looking programming books sitting on your shelf,
largely unread, will somehow make you a better programmer. As
Poole once related to me in email, "I'd never get to do that in real life"
seems to be the theme of the programming book porn pile. This is why
I considered, and rejected, buying Knuth's

. Try to purchase practical books you'll actually read, and

more importantly, put into action.

As an author, I'm guilty, too. I co-wrote a programming book, and |
it. I don't mean that in an ironic-trucker-hat,
reverse-psychology way. I mean it quite literally. It's not a bad book by any
means. [have the utmost respect for my - . But the same

information would be far more accessible on the web. Trapping it inside a
dead tree book is ultimately a waste of effort.

The internet has certainly accelerated the demise of programming books, but
there is some evidence that, even pre-internet, programmers didn't read all
that many programming books. I was quite surprised to encounter the
following passage in “ 2

“Pat yourself on the back for reading this book. You're already learning
more than most people in the software industry because one book is more
than most programmers read each year (DeMarco and Lister 1999). A little
reading goes a long way toward professional advancement. If you read even
one good programming book every two months, roughly 35 pages a week,
you'll soon have a firm grasp on the industry and distinguish yourself from
nearly everyone around you.”

I believe the same text is present in the original 1993 edition of Code
Complete, but I no longer have a copy to verify that. A little searching
uncovered the passage Steve McConnell is referencing in DeMarco and
Lister's 7

“The statistics about reading are particularly discouraging: The average
software developer, for example, doesn't own a single book on the subject of
his or her work, and hasn't ever read one. That fact is horrifying for anyone
concerned about the quality of work in the field; for folks like us who write
books, it is positively tragic.”

It pains me greatly to and learn that people are
interpreting the stackoverflow.com mission statement as a repudiation of
programming books. As ambivalent as I am about the current programming
book market, I love programming books! This very blog was founded on
the concept of my . Many of my blog
posts are my)ts outlined long ago in
classic programming books.

How to reconcile this seemingly contradictory statement, the
d ? You see, there are programming books, and there are
programming books.

The best programming books are timeless. They transcend choice of
language, IDE, or platform. They do not explain how, but why. If you feel
compelled to clean house on your bookshelf every five years, trust me on
this, you're buying the wrong programming books.

I wouldn't trade my programming bookshelf for anything. I refer to it all the
time. In fact, I referred to it twice while composing this very post.

=
—
e | —
odk LN ..-.’...".1-.;1.-._.

THYALIOS NO- 1aol
INIWJIOTIAIQ
aidvd

FONTOIAR Tl AT

raHIML AFOANIAS-NOLr 3T
= 3
B = TS S0 SSINISNE I N0 WIS T

o

e
=]
=)
m

| 1 DONIHSIIENd GAM 3

H]dﬂ"l!h]l'.l LY
@ suaslyEd UE1B0(] e e
T mulltn.-u'
== amanipay UofEnsog
e WD 443 j) wiaE
S N e s

Ay s

I won't belabor my recommended reading_list, as I've kept it proudly the
same for years.

But I do have this call to arms: my top five programming books every
working programmer should own—and read. These seminal books are
richly practical reads, year after year, no matter what kind of programming
I'm doing. They reward repeated readings, offering deeper and more
penetrating insights into software engineering every time I return to them,

armed with a few more years of experience under my belt. If you haven't
read these books, what are you waiting for?

e Code Complete 2
e Don't Make Me Think

e Peopleware

e Pragmatic Programmer

e Facts and Fallacies

It is my greatest intention to make stackoverflow.com highly
complementary to these sorts of timeless, classic programming books. It is
in no way, shape, or form meant as a replacement for them.

5

On the other hand, if you're the unfortunate author of “Perl for Dummies,’
then watch your back, because we're definitely gunning for you.

OceanofPDF.com

Nobody’s Going to Help You, and
That’s Awesome

I'm not into . I don't buy self-help books, I don't read productivity
blogs, and I certamly don't subscribe to

urt newsletters. Reading someone else's advice on the rather genenc
concept of helping yourself always struck me as a particularly misguided
idea.

Apparently I'm not the only person to , either.

“I spent two years reading all the self-help books I could find. As of a year
ago, I had read 340 self-help books. Because I’m insane.

“My conclusion from all that reading?
“95 percent of self-help books are complete bullshit.”

To be clear, I am all for self-improvement. Reading books, blogs, and
newsletters by people who have accomplished great things is a fine way to
research your own path in life. But these people, however famous and
important they may be,

“Unfortunately that's not the answer he wanted. To him, my answer [that
nobody was going to help him become successful] was really discouraging.
To me, if I was receiving that answer from someone else, it would be really
encouraging.

“I like being reminded that nobody's going to help me—that it's all up to
me. It puts my focus back on the things I can control—not waiting for
outside circumstances.”

Take it from

You should be working.

Reading self-help advice from other people, however well-intentioned, is no
substitute for getting your own damn work done. The sooner you come to
terms with this, the better off you'll be.

Get out there and do stuff because you fundamentally enjoy it and because
it makes you better. As a writer, as an analyst, as a techie, whatever. Learn

to and do it better each time. Over time,
quality does lead to success, but you have to be patient. Really patient.
Turns out, . Maybe even decades. This is not

a sprint, it's a marathon. Plan accordingly.

For example, I don't care if anyone reads what I write here. I'm writing to
satisfy myself first and foremost. If others read it and benefit from it,
fantastic—that's a welcome side effect. If I worry about who is reading,
why they're reading, or if anyone is even reading at all, I'd be too paralyzed
to write! That'd be the least productive outcome of all.

That's not to say that some introspection about the nature of your work isn't
useful. It is. Even I quoted above concluded that
five percent of self-help advice surprisingly wasn't bullshit. The one book
he recommended without hesitation?

»

Professor e
Richard Wiseman

Despite my deep reservations about the genre, I ordered this book based on
his recommendation and a number of credible references to it I noticed on
the

Why does this self-help book work when so many others fail? In a word,
science! The author goes out of his way to find actual published scientific
research documenting specific ways we can make small changes in our
behavior to produce better outcomes for ourselves and those around us. It's
powerful stuff, and the book is full of great, research-backed insights like
this one:

“A group of participants were asked to select a negative experience. One
group of participants were then asked to have a long chat with a supportive
experimenter about the event, while a second group were invited to chat
about a far more mundane topic—a typical day.

“Participants who had spent time talking about their traumatic event
through the chat had been helpful. However, the various questionnaires told

a very different story. In reality the chat had no significant impact at all.
They might just as well have been chatting about a typical day.

“In several studies, participants who have experienced a traumatic event
have been encouraged to spend just a few minutes each day writing in a
diary-type account of their deepest thoughts and feelings about it. For
example, in one study participants who had just been made redundant were
asked to reflect upon their deepest thoughts and feelings about their job
loss, including how it had affected both their personal and professional
lives. Although these types of exercises were both speedy and simple, the
results revealed a remarkable boost in their psychological and physical
well-being, including a reduction in health problems and an increase in self-
esteem and happiness.

“The results left psychologists with something of a mystery. Why would
talking about a traumatic experience have almost no effect but writing about
it yield such significant benefits? From a psychological perspective, talking
and writing are very different. Talking can often be somewhat unstructured,
disorganized, even chaotic. In contrast, writing encourages the creation of a
story line and structure that help people make sense of what has happened
and work towards a solution. In short, talking can add to a sense of
confusion, but writing provides a more systematic, solution-based
approach.”

Therefore, the real world change you would make based on this advice—
the proverbial 59 seconds on the book jacket—is to avoid talking through
traumatic experiences in favor of writing about them. Not because some
self-help guru said so, but because the published research data tells us that
talking doesn't work and writing does. Not exactly intuitive, since talking
through our problems with a friend always feels like the right thing to do,
but I have certainly documented many times over the value of writing
through a problem.

is so good, in fact, it has rekindled my hopes that our new

7 C can work. I'd love for our productivity

site to be founded on a scientific basis, and not the blind cult of personality
['ve come to expect from the self-help industry.

Remember, nobody's going to help you ... except science, and if you're
willing to put in the required elbow grease each and every day—yourself.

OceanofPDE.com

Computer Crime, Then and Now

I've already documented my brief, youthful dalliance with the illegal side of
computing as it existed in the late 1980s. But was it crime? Was I truly a
criminal? I don't think so. To be perfectly blunt, I wasn't talented enough to
be any kind of threat. I'm still not.

There are two classic books describing hackers active in the 1980s who
did have incredible talent. Talents that made them dangerous enough to be
considered criminal threats.

[RACKING A SPY
THROUGH THE MAZE OF
LOMPUTER ESP![INABE

The Cuckoo's Egg; Tracking a Spy_Through the Maze of Computer
Espionage

-
[
L]
]
L]
L
g

Cuckoo is arguably the first case of hacking that was a clearly malicious
crime circa 1986, and certainly the first known case of computer hacking as
international espionage. I read this when it was originally published in
1989, and it's still a gripping investigative story. Cliff Stoll is a visionary
writer who saw how trust in computers and the emerging Internet could
be vulnerable to real, actual, honest-to-God criminals.

I'm not sure did anything all that illegal, but there's no
denying that he was the world's first high profile computer criminal.

U5, Department of Jusths
United States Murchals Service

WANTED

BY US. MARSHALS

WOTICE T ARRESTING AGENCY: Before srrest, wlidade warmenl through Nationsl Crisee Raferm tion Center (NCDC).
Ulsited Susted Mayhals Servioe NOIC gonry pussben: (MG k

HAME: ccsccncsinasnnsssanssMITRICKE, EEVIN DAVID

AEE(E) savavennnsrnnaonnren AVTNIE, EEVIN DANTR
HMERRTLL, BREIAN ALLEK

Phacst of BAAIK: wonuvunsvnanes VAN HOTS, GALIFOENIA
Do) of Birthee waovnnvnow o @BSREMEE; 1000870
T PR —— b

Walghit. cosrnreasrassnnrnns 150

Eyet: - o +ELUE

Haliz e nnsnarnannannnse s BOINE

R0 s v nanranie e naLIGHTE

Sowrs, Marks, TabiD0: . 200w oo oo NOHE KHOA
MMI}'M!I}: - 550=10=5605

WCIC Finganprist m—l‘-mm .n-nnumsarpm PR

ADCRESS AND LOCALE: KR0WH TO RESIDE IE THE fAN FERRAYDO VALLEY AREA OF CALIPORNIA AND
LAS VEGAS, HEVADA

By 1994, he made the FBI's 10 Most Wanted list, and there were Yage

. If there was ever a moment that
computer crime and "hacking" entered the public consciousness as an
ongoing concern, this was it.

The whole story is told in minute detail by Kevin himself in

There was a sanitized version of Kevin's story presented in

Wi but this is the original directly from the source, and it's

well worth reading. I could barely put it down. Kevin has been fully

reformed for many years now; he wrote documenting his

techniques and now with companies to help improve their
computer security.

These two books cover the genesis of all computer crime as we know it. Of
course it's a much bigger problem now than it was in 1985, if for no other
reason than there are far more computers far more interconnected with each
other today than anyone could have possibly imagined in those early days.
But what's really surprising is how little has changed in the techniques of
computer crime since 1985.

The best primer of modern—and by that I mean year 2000 and later—
computer crime is

C . Modern computer crime is more like the classic
sort of crime you've seen in black and white movies: it's mostly about
stealing large sums of money. But instead of busting it out of bank vaults
Bonnie and Clyde style, it's now done electronically, mostly through ATM
and credit card exploits.

KINGPIN

HOW ONE HACKER TOOK OVER THE
BILLION DOLLAR CYBER CRIME UNDERGROUND

KEVIN POULSEN

Senigr Edit

Written by , another famous reformed hacker, “Kingpin
also a compelling read. I've read it twice now. The passage I found most

revealing is this one, written after the protagonist's release from prison in
2002:

“One of Max’s former clients in Silicon Valley tried to help by giving Max
a $5,000 contract to perform a penetration test on the company’s network.
The company liked Max and didn’t really care if he produced a report, but
the hacker took the gig seriously. He bashed at the company’s firewalls for
months, expecting one of the easy victories to which he’d grown
accustomed as a white hat. But he was in for a surprise. The state of
corporate security had improved while he was in the joint. He couldn’t
make a dent in the network of his only client. His 100 percent success
record was cracking.

“Max pushed harder, only becoming more frustrated over his
powerlessness. Finally, he tried something new. Instead of looking for
vulnerabilities in the company’s hardened servers, he targeted some of the
employees individually.

“These ‘client side’ attacks are what most people experience of hackers—a
spam e-mail arrives in your in-box, with a link to what purports to be an
electronic greeting card or a funny picture. The download is actually an
executable program, and if you ignore the warning message.”

All true; no hacker today would bother with frontal assaults. The chance of
success is miniscule. Instead, they target the soft, creamy underbelly of all
companies: the users inside. Max, the hacker described in Kingpin,
bragged, “I've been confident of my 100 percent [success] rate ever since.”
This is the new face of hacking. Or is it?

One of the most striking things about is not how skilled
a computer hacker Kevin Mitnick is (although he is undeniably great), but
how devastatingly effective he is at tricking people into revealing critical
information in casual conversations. Over and over again, in hundreds of
subtle and clever ways. Whether it's 1985 or 2005, the amount of military-
grade security you have on your computer systems matters not at all when
someone using those computers .. Social
engineering is

. It will outlive us all.

For a 2012 era example, consider . It is not unique.

“At 4:50 PM, someone got into my iCloud account, reset the password and
sent the confirmation message about the reset to the trash. My password
was a 7 digit alphanumeric that I didn’t use elsewhere. When I set it up,
years and years ago, that seemed pretty secure at the time. But it’s not.
Especially given that I’ve been using it for, well, years and years. My guess
is they used brute force to get the password and then reset it to do the
damage to my devices.”

I heard about this on Twitter when the story was originally developing, and
my initial reaction was skepticism that anyone had bothered to brute force
anything at all, since . Guess what it turned out
to be. Go ahead, guess!

Did you by any chance guess
? Bingo.

“After coming across my [Twitter] account, the hackers did some
background research. My Twitter account linked to my personal website,
where they found my Gmail address. Guessing that this was also the e-mail
address I used for Twitter, Phobia went to Google’s account recovery page.
He didn’t even have to actually attempt a recovery. This was just a recon
mission.

“Because I didn’t have Google’s two-factor authentication turned on, when
Phobia entered my Gmail address, he could view the alternate e-mail I had
set up for account recovery. Google partially obscures that information,
starring out many characters, but there were enough characters available,
meeeen@me.com. Jackpot.

“Since he already had the e-mail, all he needed was my billing address and
the last four digits of my credit card number to have Apple’s tech support
issue him the keys to my account.

“So how did he get this vital information? He began with the easy one. He
got the billing address by doing a who-is search on my personal web
domain. If someone doesn’t have a domain, you can also look up his or her
information on Spokeo, WhitePages, and PeopleSmart.

“Getting a credit card number is tricker, but it also relies on taking
advantage of a company’s back-end systems... First you call Amazon and

tell them you are the account holder, and want to add a credit card number
to the account. All you need is the name on the account, an associated e-
mail address, and the billing address. Amazon then allows you to input a
new credit card. (Wired used a bogus credit card number from a website
that generates fake card numbers that conform with the industry’s published
self-check algorithm.) Then you hang up.

“Next you call back, and tell Amazon that you’ve lost access to your
account. Upon providing a name, billing address, and the new credit card
number you gave the company on the prior call, Amazon will allow you to
add a new e-mail address to the account. From here, you go to the Amazon
website, and send a password reset to the new e-mail account. This allows
you to see all the credit cards on file for the account—not the complete
numbers, just the last four digits. But, as we know, Apple only needs those
last four digits.”

Phobia, the hacker Mat Honan documents, was a minor who did this for
laughs. One of his friends is

; he's the one who discovered the Amazon credit card technique
described above. And what are teenage hackers up to these days?

“Xbox gamers know each other by their gamertags. And among young
gamers it’s a lot cooler to have a simple gamertag like ‘Fred’ than, say,
‘Fred19880hio.” Before Microsoft beefed up its security, getting a
password-reset form on Windows Live (and thus hijacking a gamer tag)
required only the name on the account and the last four digits and expiration
date of the credit card on file. Derek discovered that the person who owned
the ‘Cosmo’ gamer tag also had a Netflix account. And that’s how he
became Cosmo.

“‘T called Netflix and it was so easy,” he chuckles. ‘They said, ‘What’s your
name?’ and I said, “Todd [Redacted],” gave them his e-mail, and they said,
‘Alright your password is 12345,” and I was signed in. I saw the last four
digits of his credit card. That’s when I filled out the Windows Live
password-reset form, which just required the first name and last name of the
credit card holder, the last four digits, and the expiration date.

“This method still works. When Wired called Netflix, all we had to provide
was the name and e-mail address on the account, and we were given the

same password reset.”

The techniques are . The only difference between Cosmo and
Kevin Mitnick is that they were born in different decades. Computer crime
is a whole new world now, but the techniques used today are almost
identical to those used in the 1980s. If you want to engage in computer
crime, don't waste your time developing ninja level hacking skills, because
computers are not the weak point.

People are.

OceanofPDEF.com

How to Talk to Human Beings

I hesitate to say everyone should have a child, because becoming a parent is
an intensely personal choice. I try my best to avoid evangelizing the
experience, but the deeper in I get, the more I believe that nothing captures
the continued absurdity of the human condition better than having a
child does.

After becoming a parent, the first thing you'll say to yourself is, my God, it
is a miracle any of us even exist, because I want to freakin' kill this kid at
least three times a day. But then your child will spontaneously hug you, or
tell you some stupid joke that they can't stop laughing at, or grab for your
hand while crossing the street and then ... well, here we all are, aren't we?
I'm left wondering if I'll ever be able to love other people—or for that
matter myself—as much as I love my children. Unconditional, irrational,
nonsensical love. That's humanity in a nutshell.

Parenting is by far the toughest job I've ever had. It makes my so-called
career seem awfully quaint in comparison.

s

-

A .M

My favorite part of the parenting process, though, is finally being able to
talk to my kids. When the dam breaks and all that crazy stuff they had
locked away in those tiny brains for the first two years comes
uncontrollably pouring out. Finding out what they're thinking about and
what kind of people they are at last. Watching them discover and explore

the surface of language is utterly fascinating. After spending two years
trying to guess—with extremely limited success—what they want and need,
truly, what greater privilege is there than to simply ask them? Language:
I like it so much I'm using it right now!

Language also allows kids to demonstrate just what crazy little rolling balls
of id they (and by extension, we) all are on the inside. Kids don't know what
it means to be mad, to be happy, to be sad. They have to be taught what
emotions are, how to handle them, and how to deal in a constructive way
with everything the world is throwing at them. You'll get a ringside seat to
this process not as a passive observer, but as their coach and spirit guide.
They have no coping mechanisms except the ones we teach them. The
difference between a child who freaks out at the slightest breeze, and a
child who can confidently navigate an unfamiliar world? The parents.

See, I told you this was going to be tough.

There are of course innumerable books on parenting and child-rearing, most
of which I have no time to read because by the time I'm done being a parent
for the day, I'm too exhausted to read more about it. And, really, who wants
to read about parenting when you're living the stuff 24/7? Except on
e, of course. However, there is one particular book
I happened to discover that was shockingly helpful, even after barely ten
pages in. If you ever need to deal with children aged 2 to 99, stop reading
right now and go buy “

»

MNATIONAL BESTSELLER—
OVER 2 MILLION COPIES SOLD! 20

ANHIVERSARY
EDITION
UPDATED-—ROW

TO Ta Ik "CHAPTERS
So Kids
Will Listen
& LiSten ot e

from children

than all
I the yelling
and plﬂadlnu

ADELE FABER ano
ELAINE MAZLISH

HAuthores of the #1 Bestsedlpe
SIBLINGS WITHOUT RIVALRY

We already own three copies. And you're welcome.

What's so great about this book? I originally found it through A.J. Jacobs,
who I mentioned in Trust Me, I'm [ying. Here's how he describes it:

The best marriage advice book I’ve read is a paperback called How to Talk
So Kids Will Listen and Listen So Kids Will Talk. As you might deduce from
the title, it wasn’t meant as a marriage advice book. But the techniques in
this book are so brilliant, I use them in every human interaction I can, no

matter the age of the conversant. It’s a strategy that was working well until
today.

The book was written by a pair of former New York City teachers, and their
thesis is that we talk to kids all wrong. You can’t argue with kids, and you
shouldn’t dismiss their complaints. The magic formula includes: listen,
repeat what they say, label their emotions. The kids will figure out the
solution themselves.

I started using it on Jasper, who would throw a tantrum about his brothers
monopolizing the pieces to Mouse Trap. I listened, repeated what he said,
and watched the screaming and tears magically subside. It worked so well,
I decided, why limit it to kids? My first time trying it on a grown-up was one
morning at the deli. I was standing behind a guy who was trying
unsuccessfully to make a call on his cell.

‘Oh come on! I can't get a signal here? Dammit. This is New York.’
He looked at me.

‘No signal?’ I say. ‘Here in New York?’ (Repeat what they say.)
‘It’s not like we’re in goddamn Wisconsin.’

‘Mmmm.’ (Listen. Make soothing noises.)

“We’re not on a farm. It’s New York, for God’s sake,’ he said.
‘That’s frustrating,’ I say. (Label their emotions.)

He calmed down.”

This book taught me that, as with so many other things in life, I've been
doing it all wrong. I thought it was my job as a parent to solve problems for
my children, to throw myself on life's figurative grenades to protect them.
Consider the following illustrated examples from the book.

e dan'y have

| woant any dear.
r... [/

Teastie

Crundmies|

Ay
Y=

=
=

?\h\lni jou re
= ek e
o ooy !

Notice how she cleverly lets the child reach an alternative solution himself,
rather than providing the "solution" to him on a silver platter as the all-
seeing, all-knowing omniscient adult. This honestly would never have
occurred to me, because, well, if we're out of Toastie Crunchies, then we are
out of freaking Toastie Crunchies!

I've learned to fall back whenever possible to simply describing things or
situations instead of judging or pontificating. I explain the consequences of
potential actions rather than jumping impatiently to "don't do that."

How to Talk So Kids Will Listen & lListen So Kids Will Talk is full of
beautiful little insights on human interaction like this, and I was surprised to
find how often what I thought was a good parenting behavior was working
against us. Turns out, children aren't the only ones who have trouble dealing
with their emotions and learning to communicate. I haven't just improved
my relationship with my kids using the practical advice in this book, I've
improved my interactions with all human beings from age 2 to 99.

Kids will teach you, if you let them. They'll teach you that getting born is
the easy part. Anyone can do that in a day. But becoming a well-adjusted
human being? That'll take the rest of your life.

OceanofPDF.com

Practicing the Fundamentals: The
New Turing Omnibus

While researching Classic Computer Science Puzzles, our CEO Scott
Stanfield turned me on to A.K. Dewdney's “IThe New Turing Omnibus: 66
Excursions in Computer Science.”

THE NEW TURING
OMNIBUS

66 EXCURSIONS IN
COMPUTER SCIENCE

This is an incredibly fun little book. Sure, it's got Towers of Hanoi, but it's
also got so much more:

“The book is designed to appeal both to the educated layperson and to the
student of computer science. But how is that possible? The answer lies in
the variety of treatments as well as topics. Some of the topics are inherently
easy or I have been lucky enough to stumble upon just the right expository
mechanisms. Some of the topics are inherently deep or complicated and
there is no way around a certain rigor, including occasional mathematical
symbolism.

“For students of computer science, the 66 chapters that follow will give a
sneak preview of the major ideas and techniques they will encounter in their
undergraduate careers and some they may only encounter as graduate
students. For professors of computer science, my colleagues, the 66
chapters will amount to a sneak review. Trying to remember how the Boyer-
Moore string-matching algorithm went? It's right there in Chapter 61,
Searching Strings. As for your lectures, if you like to deliver your own
material this book may be what you've been looking for.

“At one end of its spectrum of uses, ” may be
ideal in bringing students from diverse backgrounds ‘up to speed.” At the
other end of the spectrum, you retain creative control but draw a few (or
many) of your lectures from this book. Finally, for educated laypersons, the
book provides a brief roadmap of computability.”

I have no idea why I hadn't heard of this book, originally published in 1988
and updated with a second edition in 1993, until now. “The New Turing
Omnibus” is is probably the single closest published equivalent to what I do
on this very blog. It's a grab-bag of computing topics. Each chapter is the
equivalent of a short blog post examining a particular topic, peppered with
tables, diagrams, and illustrations. And the topics aren't presented in any
particular order. Browse and find something you like; discard the rest.
Here's a short excerpt from Chapter 33, Shannon's Theory—The Elusive
Codes:

lm:tl ved uun.u

00a 1]
100, 010, or (01 LI
018, 10T, or 110 |

111 1

success. For example, if p = .1, then the probability that the demon will cormp
the message irretrievably is (028

The foregoing coding scheme wsed simple redundancy as a guard agains
errors. Other, more sophisticated methods are available (see Chapter 12). For
example, one may group the message bits into pairs and transmit the pairs along
with 2 extra check bits according to the following scheme.

Hiix Bii=
dyily i,
0 o o o
01 1 1
1 0 01

The first check bit, a,, simply echoes the second message bit ay; a8y = a;. The
second check bit is called a check sum. It is the logical sum of the first 2 bits;
dy = H" E:I idy .

Sender 0111011010000 1011 100100 ——=| Heceiver

Figure 49.1 The noise demon at work

There is no guarantee for any coding scheme that the corruption demon will
fail. IF it succeeds in changing enough bits, no decoding scheme will be able to
recover the original message. For this reason, the message is decoded by the
maximum:likelihood method. For each received string of 4 bits, whar is the
most lkely interpretation of the first 2 bits? The following algorithm takes the 4
received bits &y, by, by, by as input and outputs b, and b, , altered according o
probable errors detected by the algorithm:

1. input by, by, by, by
2,40 by = by 8 by
then if by # by
then b, ~— by
else b, — b,
3. output by, b,

The operation of the decoding algorithm is illustrated in the hypercube
diagram in Figure 49.2. Each vertex represents a possible 4-bit string 1o be
received. Four of the ventices are circled. These represent the four original
[probably uncormupted) code words.

Venices representing strings that differ in only 1 bit are connected by an
edge. If one analyzes the action of the algorithm on each of the 16 possible
received words, one discovers that each word is reinterpreted as the “nearest”
code word. The concept of distance applied here is the Hamming distance, the
minimum number of edges traversed in going from one vertex (possible word)

-

13 DM |

PEHE] JiEH}

Flgure 49.2 An emror-commecting code in 2 hypercube

A complete table of contents for all 66 chapters of “The New Turing
Omnibus” is enumerated at Everything2. I think there's a very high
probability that if you enjoy reading this blog on a regular basis, you'll also
enjoy this remarkable little book. As promised, it's a great way to keep
practicing the fundamentals for professionals:

“Bert Bates (my co-author) is a blackbelt-level go player, one of the best
amateur players in the state. But when a visiting expert—four belt levels
above Bert—showed up at the local go tournament, Bert was surprised to
see the guy reading a book on fundamental go problems that Bert had read
much earlier in his learning. The expert said, ‘I must have read this at least
a hundred times. My goal each time is to see how much more quickly I can
solve all the problems in the book than I did the last time.’

Some of the best athletes never forget the fundamentals—whether it's Tiger
Woods practicing the basics, or a pro basketball player working on free
throws. A good musician might still practice arpeggios. A programmer
might... T don't know, actually. What would be the fundamentals that a
good programmer might forget? I'll have to think about that one.”

But it's not just a book for programmers; it's also got a broad, down-to-earth
appeal. It's an intriguing collection of thought puzzles for laypeople with at
least a passing interest in the field of computer science.

If you'd like to see more, you can)a

. A few more pages are available , but beware
the randomly inserted "copyrighted image" placeholder instead of the many
illustrations and diagrams throughout the book.

Become a Hyperink reader. Get a s

Like the book? Support our author and leave a !

OceanofPDEFE.com

About The Author

-

B

i
Jeff Atwood

I'm Jeff Atwood. I live in Berkeley, CA with my wife, two cats, one three
children, and a whole lot of computers. I was weaned as a software
developer on various implementations of Microsoft BASIC in the 80's,
starting with my first microcomputer, the Texas Instruments TI-99/4a. I
continued on the PC with Visual Basic 3.0 and Windows 3.1 in the early
90's, although I also spent significant time writing Pascal code in the first
versions of Delphi. I am now quite comfortable in VB.NET or C#, despite
the evils of case sensitivity. I'm currently learning Ruby.

I consider myself a reasonably experienced Windowsweb software
developer with a particular interest in the human side of software
development, as represented in my recommended developer reading list.
Computers are fascinating machines, but they're mostly a reflection of the
people using them. In the art of software development, studying code isn't
enough; you have to study the people behind the software, too.

In 2004 T began Coding Horror. I don't mean to be overly dramatic, but it
changed my life. Everything that comes after was made possible by this
blog.

In 2005, I found my dream job at Vertigo Software and moved to
California. You can take a virtual tour of my old office if you'd like.

In 2008 I decided to choose my own adventure. I founded and built
stackoverflow.com, and what would ultimately become the Stack Exchange
network of Q&A sites, in a joint venture with Joel Spolsky. The Stack
Exchange network is now one of the top 150 largest sites on the Internet.

In early 2012 I decided to leave Stack Exchange and spend time with my
growing family while I think about what the next thing could be.

Content © 2012 Jeff Atwood. Logo image used with permission of the
author. © 1993 Steven C. McConnell. All Rights Reserved.

QOceanofPDFE.com

About the Publisher

Hyperink is the easiest way for anyone to publish a beautiful, high-
quality book.

We work closely with subject matter experts to create each book. We cover
topics ranging from higher education to job recruiting, from Android apps
marketing to barefoot running.

If you have interesting knowledge that people are willing to pay for,
especially if you've already produced content on the topic, please

to us! There's no writing required and it's a unique opportunity to build your
own brand and earn royalties.

Hyperink is based in SF and actively hiring people who want to shape
publishing's future. if you'd like to meet our team!

Note: If you're reading this book in print or on a device that's not web-
enabled, please email hy with the title of this book

in the subject line. We'll send you a PDF copy, so you can access all of the
great content we've included as clickable links.

Get in touch: _'F

OceanofPDEF.com

Other Awesome Books

Hyperink Benefits
*Interesting Insights

*The Best Commentary
*Shocking Trivia

OceanofPDEF.com

Copyright © 2013-Present. Hyperink Inc.
The standard legal stuff:

All rights reserved. No part of this book may be reproduced in any form or
by any electronic or mechanical means, including information storage and
retrieval systems, without permission in writing from Hyperink Inc., except
for brief excerpts in reviews or analysis.

Our note:

Please don't make copies of this book. We work hard to provide the highest
quality content possible - and we share a lot of it for free on our sites - but
these books are how we support our authors and the whole enterprise.
You're welcome to borrow (reasonable) pieces of it as needed, as long as
you give us credit.

Thanks!
The Hyperink Team
Disclaimer

This ebook provides information that you read and use at your own risk.
This book is not affiliated with or sponsored by any other works, authors, or
publishers mentioned in the content.

Thanks for understanding. Good luck!

OceanofPDEF.com

